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Functions Supported for GPU Code
Generation

• “MATLAB Language Features Support for GPU Coder” on page 1-2
• “Supported Functions” on page 1-6
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MATLAB Language Features Support for GPU Coder
GPU Coder™ supports many of the MATLAB® language features supported by MATLAB Coder™, see
“MATLAB Language Features Supported for C/C++ Code Generation”. However, some features may
be supported in a restricted mode and others not supported. In the following sections, we highlight
some of the important features that affect GPU code generation and then list the features that not
supported by GPU Coder.

A common and important consideration is variable-size matrices support. This feature can really
affect the way CUDA® kernels are created and the following discussion describes the feature and
considerations for GPU code generation.

Code Generation for Variable-Size Arrays
For code generation, an array dimension is fixed-size or variable-size. If the code generator can
determine the size of an array and that the size of the array does not change at run time, then the
dimension is fixed-size. When all dimensions of an array are fixed-size, the array is a fixed-size array.
In the following example, Z is a fixed-size array.

function Z = myfcn()
Z = zeros(1,4);
end

If the code generator cannot determine the size of an array or the code generator determines that the
size changes, then the dimension is variable-size. When at least one of its dimensions is variable-size,
an array is a variable-size array.

A variable-size dimension is either bounded or unbounded. A bounded dimension has a fixed upper
size. An unbounded dimension does not have a fixed upper size.

In the following example, the second dimension of Z is bounded, variable-size. It has an upper bound
of 32.

function s = myfcn(n)
if (n > 0)
    Z = zeros(1,4);
else
    Z = zeros(1,32);
end
s = length(Z);

In the following example, if the value of n is unknown at compile time, then the second dimension of Z
is unbounded.

function s = myfcn(n)
Z = rand(1,n);
s = sum(Z);
end

You can define variable-size arrays by:

• Using constructors, such as zeros or ones, with a nonconstant size value
• Assigning multiple, constant sizes to the same variable before using it
• Using loops to grow the dimensions of variables

1 Functions Supported for GPU Code Generation
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• Declaring all instances of a variable to be variable-size by using coder.typeof or
coder.varsize functions. For example, coder.typeof(1, [12,1],[true, false]) and
coder.varsize(1, [Inf,1], [true, false]).

For more information, see “Define Variable-Size Data for Code Generation”.

Enabling and Disabling Support for Variable-Size Arrays

Code Generation Behavior

For variable-size arrays that are bounded, GPU Coder maps these bounded variables to the GPU and
CUDA kernels are created. To specify upper bounds for variable-size arrays, see “Specify Upper
Bounds for Variable-Size Arrays”.

For unbounded, variable-size arrays and variable-size arrays whose size is greater than or equal to a
DynamicMemoryAllocation threshold, GPU Coder does not map these variables to the GPU and
kernels are not created. The code generator allocates memory dynamically on the CPU heap. GPU
Coder issues a warning for unbounded variables in the build log and code generation report.

By default, the code generator is set to use dynamic memory allocation for variable-size arrays whose
size is greater than or equal to the threshold with a threshold value of 2 GB. To change these settings:

• In the configuration object, set the DynamicMemoryAllocation to Threshold and
DynamicMemoryAllocationThreshold to a non-negative integer.

• In the GPU Coder app, in the Memory settings, set Dynamic memory allocation to For
arrays with max size at or above threshold and the Dynamic memory allocation
threshold to a non-negative integer.

Variable-Size Arrays in a Code Generation Report

You can tell whether an array is fixed-size or variable-size by looking at the Size column of the
Variables tab in a code generation report.

A colon (:) indicates that a dimension is variable-size. A question mark (?) indicates that the size is
unbounded. For example, a size of 1-by-:? indicates that the size of the first dimension is fixed-size 1
and the size of the second dimension is unbounded, variable-size. An asterisk (*) indicates that the
code generator produced a variable-size array, but the size of the array does not change during
execution.
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Structure Definition for Code Generation
To generate efficient standalone code for structures, you must define and use structures differently
than you normally would when running your code in the MATLAB environment. For code generation,
you must first create a scalar template version of the structure before growing it into an array. The
code generation inference engine uses the type of this scalar value as the base type of the array. To
generate standalone code for MATLAB structures, you are restricted to the following operations:

• Define structures as local and persistent variables by assignment and using the struct function
• Index structure fields using dot notation
• Define primary or entry-point function inputs as structures
• Pass structures to local functions

For more information, see “Structure Definition for Code Generation”.

Note GPU Coder generates more efficient code when you use struct of arrays instead of array of
structs.

Example

This example shows how to write a MATLAB function that uses structure arrays so that it is suitable
for code generation. First, you must specify the base element using the struct function.

tempS = struct('a',0,'b',0);
numE = 2000;
AofS = repmat(tempS,numE,1);

In MATLAB, when building up a structure array, you would typically add fields as you go. This
"dynamic" style of building structures is not supported for code generation. One reason is that it is
possible in MATLAB to have different structure fields for two different elements of a structure array,
which conflicts with the more static approach of type inference. Therefore, you must specify the base
scalar element first, and then grow a structure array from this fully specified element. This method
guarantees that two elements of a structure array always share type (fields).

for ind = 1:numE
 AofS(ind).a = rand;
 AofS(ind).b = rand;
end

Now, you can define an entry-point function mStructSupport that takes AofS as input. The local
function arrayOp doubles AofS.b and stores the result in AofS.a.

function [V] = mStructSupport(AofS)
 V = arrayOp(AofS);

end

function AofS = arrayOp(AofS)
 n = numel(AofS);

 for i = 1:n
  AofS(i).a  = AofS(i).b * 2;    
 end  

1 Functions Supported for GPU Code Generation

1-4



end

You can use any of the methods described in “Code Generation by Using the GPU Coder App” to
generate CUDA code for this example.

Unsupported Features
The following list contains the features that are not currently supported.

• Memory integrity checks, see “Control Run-Time Checks”.
• Array bound and dimension checks.
• break statements.
• Function handles are supported only when defined within another function and not as entry-point

parameter.
• Anonymous functions are supported only when defined within another function and not as an

entry-point parameter.
• MATLAB classes.
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Supported Functions
You can generate CUDA code for a subset of MATLAB built-in functions and toolbox functions that
you call from MATLAB code. These functions appear in alphabetical order in the following table.
Some of these functions especially from the Image Processing Toolbox™ contain calls to other
functions, GPU Coder does not create CUDA kernels for all the loops and functions that the parent
function relies on. However, GPU Coder does generate C/C++ code for sections that cannot be
mapped to the GPU. The results from the code generated for functions in this list are also numerically
equivalent (within tolerance) to its MATLAB counterpart. See, “Numerical Differences Between CPU
and GPU”.

Link to an categorized list of all functions that support the GPU code generation: Functions
Supporting GPU Code Generation.

1 Functions Supported for GPU Code Generation

1-6



Kernel Creation from MATLAB Code

• “Kernels from Element-Wise Loops” on page 2-2
• “Kernels from Scatter-Gather Type Operations” on page 2-4
• “Kernels from Library Calls” on page 2-8
• “cuBLAS Example” on page 2-10
• “cuSOLVER Example” on page 2-12
• “FFT Example” on page 2-15
• “Thrust Example” on page 2-17
• “Call Custom CUDA Kernels from the Generated Code” on page 2-18
• “Call Custom CUDA Device Function from the Generated Code” on page 2-22
• “Design Patterns” on page 2-26
• “GPU Memory Allocation and Minimization” on page 2-28
• “Use Dynamically Allocated C++ Arrays in Generated Function Interfaces” on page 2-33
• “Support for GPU Arrays” on page 2-37
• “What is Half Precision?” on page 2-39
• “Half Precision Code Generation Support” on page 2-44
• “Simulate Diffraction Patterns Using CUDA FFT Libraries” on page 2-55
• “Benchmark Solving a Linear System by Using GPU Coder” on page 2-61
• “QR Decomposition on NVIDIA GPU Using cuSOLVER Libraries” on page 2-69
• “Stencil Processing on GPU” on page 2-74
• “Fog Rectification” on page 2-80
• “Stereo Disparity” on page 2-85
• “Feature Extraction Using SURF” on page 2-91
• “Feature Matching” on page 2-96
• “Lane Detection on the GPU by Using the houghlines Function” on page 2-100
• “Edge Detection with Sobel Method in Half-Precision” on page 2-103
• “Build a Map from Lidar Data using SLAM on GPU” on page 2-107
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Kernels from Element-Wise Loops
The simplest case of CUDA kernel creation is from MATLAB functions that contain scalarized,
element-wise math operations. When element-wise operations are enclosed within a for-loop body,
concurrent CUDA threads can be invoked to compute each loop iteration in parallel. Because CUDA
threads execute in no particular order, and are independent of each other, it is essential that no
iteration in your for-loop depends on the results of other iterations.

Element-Wise Math Example
This example shows how to create CUDA kernels from functions that contain element-wise math
operations. Suppose that you want to square each element of a matrix x and scale by a factor of 1/(i
+j), where i,j are the row and column indexes. You can implement this example as a MATLAB
function.

function [y] = myFun(x)

y = zeros(size(x));
for i = 1:size(x,1)
    for j = 1:size(x,2)
        y(i,j)=(x(i,j)^2)/(i+j);
    end
end
end

Preparing myFun for Code Generation
The first statement zeros(size(A)) in the myFun function is to initialize result vector y to zeros.
For CUDA code generation, pre-allocate memory for y without incurring the overhead of initializing
the memory to zeros. Replace this line with coder.nullcopy(zeros(size(y))).

To create CUDA kernels from loops, GPU Coder provides another pragma coder.gpu.kernel.
Specifying this kernel pragma overrides all parallel-loop analysis. If you do not specify any
parameters, GPU Coder determines the kernel bounds based on the loop bounds and input size. It
provides a way for you to specify kernel launch parameters such as thread and block sizes. However,
use it only when you know that the loop is safe to parallelize. Because the myFun example is simple
and does not require specification of the kernel launch parameters, you can utilize the
coder.gpu.kernelfun pragma to generate CUDA kernels.

With these modifications, the original myFun function is suitable for code generation.

function [y] = myFun(x) %#codegen

y = coder.nullcopy(zeros(size(x)));
coder.gpu.kernelfun();
for i = 1:size(x,1)
    for j = 1:size(x,2)
        y(i,j)=(x(i,j)^2)/(i+j);
    end
end
end
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Generated CUDA Code
When you generate CUDA code by using the GPU Coder app or from the command line, GPU Coder
creates a single kernel that performs squaring and scaling operation. The following is a snippet of the
myFun_kernel1 kernel code.
static __global__ __launch_bounds__(512, 1) void myFun_kernel1(const real_T *x,
  real_T *y)
{
...
threadId = ((((gridDim.x * gridDim.y * blockIdx.z + gridDim.x * blockIdx.y) +
                blockIdx.x) * (blockDim.x * blockDim.y * blockDim.z) +
               threadIdx.z * blockDim.x * blockDim.y) + threadIdx.y * blockDim.x)
    + threadIdx.x;
  i = (int32_T)(threadId / 512U);
  j = (int32_T)(threadId - (uint32_T)i * 512U);
  if ((!(j <= 512)) && (!(i <= 512))) {
    y[i + (j << 9)] = x[i + (j << 9)] * x[i + (j << 9)] / ((real_T)(i + j) + 2.0);
  }
}

The following is a snippet of the main myFun function. Before calling myFun_kernel1, there is a
single cudaMemcpy call that transfers the matrix x from the host (x) to the device (gpu_x). The
kernel has 512 blocks containing 512 threads per block, consistent with the size of the input vector. A
second cudaMemcpy call copies the result of the computation back to the host.
cudaMemcpy((void *)gpu_x, (void *)x, 2097152ULL, cudaMemcpyHostToDevice);
myFun_kernel1<<<dim3(512U, 1U, 1U), dim3(512U, 1U, 1U)>>>(gpu_x, gpu_y);
cudaMemcpy((void *)y, (void *)gpu_y, 2097152ULL, cudaMemcpyDeviceToHost);

Limitations
• If the loop bounds are of the unsigned data type, the code generator may add conditional checks

to determine if the loop bounds are valid. These conditional checks may limit optimizations that
are performed by the software and introduce reduction kernels that can affect performance.

See Also
coder.gpu.kernel | coder.gpu.kernelfun | gpucoder.matrixMatrixKernel |
coder.gpu.constantMemory | gpucoder.stencilKernel

Related Examples
• “Design Patterns” on page 2-26
• “Kernels from Scatter-Gather Type Operations” on page 2-4
• “Kernels from Library Calls” on page 2-8
• “Call Custom CUDA Device Function from the Generated Code” on page 2-22
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Kernels from Scatter-Gather Type Operations
GPU Coder also supports the concept of reductions - an important exception to the rule that loop
iterations must be independent. A reduction variable accumulates a value that depends on all the
iterations together, but is independent of the iteration order. Reduction variables appear on both side
of an assignment statement, such as in summation, dot product, and sort. The following example
shows the typical usage of a reduction variable x:

x = ...; % Some initialization of x
for i = 1:n
  x = x + d(i);
end

The variable x in each iteration gets its value either before entering the loop or from the previous
iteration of the loop. This serial order type implementation is not suitable for parallel execution due
to the chain of dependencies in the sequential execution. An alternative approach is to employ a
binary tree-based approach.

In the tree-based approach, you can execute every horizontal level of the tree in parallel over a
certain number of passes. When compared to sequential execution, the binary tree does require more
memory because each pass requires an array of temporary values as output. The performance benefit
that you receive far outweighs the cost of increased memory usage. GPU Coder creates reduction
kernels by using this tree-based approach wherein each thread block reduces a portion of the array.
Parallel reduction requires partial result data exchanges between thread blocks. In older CUDA
devices, this data exchange was achieved by using shared memory and thread synchronization.
Starting with the Kepler GPU architecture, CUDA provides shuffle (shfl) instruction and fast device
memory atomic operations that make reductions even faster. Reduction kernels that the GPU Coder
creates use the shfl_down instruction to reduce across a warp (32 threads) of threads. Then, the
first thread of each warp uses the atomic operation instructions to update the reduced value.

For more information on the instructions, refer to the NVIDIA® documentation.
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Vector Sum Example
This example shows how to create CUDA reduction type kernels by using GPU Coder. Suppose that
you want to create a vector v and compute the sum of its elements. You can implement this example
as a MATLAB function.

function s = VecSum(v)
    s = 0;
    for i = 1:length(v)
       s = s + v(i);
    end
end

Prepare vecSum for Kernel Creation
GPU Coder requires no special pragma to infer reduction kernels. In this example, use the
coder.gpu.kernelfun pragma to generate CUDA reduction kernels. Use the modified VecSum
function.

function s = VecSum(v) %#codegen
    s = 0;
    
    coder.gpu.kernelfun();
    for i = 1:length(v)
       s = s + v(i);
    end
end

Generated CUDA Code
When you generate CUDA code by using the GPU Coder app or from the command line, GPU Coder
creates a single kernel that performs the vector sum calculation. The following is a snippet of
vecSum_kernel1.
static __global__ __launch_bounds__(512, 1) void vecSum_kernel1(const real_T *v,
  real_T *s)
{
  uint32_T threadId;
  uint32_T threadStride;
  uint32_T thdBlkId;
  uint32_T idx;
  real_T tmpRed;
  ;
  ;
  thdBlkId = (threadIdx.z * blockDim.x * blockDim.y + threadIdx.y * blockDim.x)
    + threadIdx.x;
  threadId = ((gridDim.x * gridDim.y * blockIdx.z + gridDim.x * blockIdx.y) +
              blockIdx.x) * (blockDim.x * blockDim.y * blockDim.z) + thdBlkId;
  threadStride = gridDim.x * blockDim.x * (gridDim.y * blockDim.y) * (gridDim.z *
    blockDim.z);
  if (!((int32_T)threadId >= 512)) {
    tmpRed = 0.0;
    for (idx = threadId; threadStride < 0U ? idx >= 511U : idx <= 511U; idx +=
         threadStride) {
      tmpRed += v[idx];
    }

    tmpRed = workGroupReduction1(tmpRed, 0.0);
    if (thdBlkId == 0U) {
      atomicOp1(s, tmpRed);
    }
  }
}
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Before calling VecSum_kernel1, two cudaMemcpy calls transfer the vector v and the scalar s from
the host to the device. The kernel has one thread block containing 512 threads per block, consistent
with the size of the input vector. A third cudaMemcpy call copies the result of the computation back
to the host. The following is a snippet of the main function.
  cudaMemcpy((void *)gpu_v, (void *)v, 4096ULL, cudaMemcpyHostToDevice);
  cudaMemcpy((void *)gpu_s, (void *)&s, 8ULL, cudaMemcpyHostToDevice);
  VecSum_kernel1<<<dim3(1U, 1U, 1U), dim3(512U, 1U, 1U)>>>(gpu_v, gpu_s);
  cudaMemcpy(&s, gpu_s, 8U, cudaMemcpyDeviceToHost);

Note For better performance, GPU Coder gives priority to parallel kernels over reductions. If your
algorithm contains reduction inside a parallel loop, GPU Coder infers the reduction as a regular loop
and generates kernels for it.

1-D Reduction Operations on the GPU
You can use the gpucoder.reduce function to generate CUDA code that performs efficient 1-D
reduction operations on the GPU. The generated code uses the CUDA shuffle intrinsics to implement
the reduction operation.

For example, to find the sum and max elements of an array A:

function s = myReduce(A)
   s = gpucoder.reduce(A, {@mysum, @mymax}); 
end

function c = mysum(a, b)
   c = a+b;
end

function c = mymax(a, b)
   c = max(a,b);
end

For code generation, the gpucoder.reduce function has these requirements:

• The input must be of numeric or logical data type.
• The function passed through the @handle must be a binary function that accepts two inputs and

returns one output. The inputs and outputs must be of the same data type.
• The function must be commutative and associative.

Note For some inputs that are of the integer data type, the code generated for the
gpucoder.reduce function may contain intermediate computations that reach saturation. In such
cases, the results from the generated code may not match the simulation results from MATLAB.

See Also
coder.gpu.kernel | coder.gpu.kernelfun | gpucoder.matrixMatrixKernel |
coder.gpu.constantMemory | gpucoder.stencilKernel | gpucoder.reduce

Related Examples
• “Design Patterns” on page 2-26
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• “Kernels from Element-Wise Loops” on page 2-2
• “Kernels from Library Calls” on page 2-8
• “Call Custom CUDA Device Function from the Generated Code” on page 2-22
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Kernels from Library Calls
GPU Coder supports libraries optimized for CUDA GPUs such as cuBLAS, cuSOLVER, cuFFT, Thrust,
cuDNN, and TensorRT libraries.

• The cuBLAS library is an implementation of Basic Linear algebra Subprograms (BLAS) on top of
the NVIDIA CUDA run time. It allows you to access the computational resources of the NVIDIA
GPU.

• The cuSOLVER library is a high-level package based on the cuBLAS and cuSPARSE libraries. It
provides useful LAPACK-like features, such as common matrix factorization and triangular solve
routines for dense matrices, a sparse least-squares solver, and an Eigenvalue solver.

• The cuFFT library provides a high-performance implementation of the Fast Fourier Transform
(FFT) algorithm on NVIDIA GPUs. The cuBLAS, cuSOLVER, and cuFFT libraries are part of the
NVIDIA CUDA Toolkit.

• Thrust is a C++ template library for CUDA. The Thrust library is shipped with CUDA Toolkit and
allows you to take advantage of GPU-accelerated primitives such as sort to implement complex
high-performance parallel applications.

• The NVIDIA CUDA Deep Neural Network library (cuDNN) is a GPU-accelerated library of
primitives for deep neural networks. cuDNN provides highly tuned implementations for standard
routines such as forward and backward convolution, pooling, normalization, and activation layers.
The NVIDIA TensorRT is a high performance deep learning inference optimizer and runtime
library. For more information, see “Code Generation for Deep Learning Networks by Using
cuDNN” on page 4-69 and “Code Generation for Deep Learning Networks by Using TensorRT” on
page 4-78.

GPU Coder does not require a special pragma to generate kernel calls to libraries. During the code
generation process, when you select the Enable cuBLAS option in the GPU Coder app or use
config_object.GpuConfig.EnableCUBLAS = true property in CLI, GPU Coder replaces some
functionality with calls to the cuBLAS library. When you select the Enable cuSOLVER option in the
GPU Coder app or use config_object.GpuConfig.EnableCUSOLVER = true property in CLI,
GPU Coder replaces some functionality with calls to the cuSOLVER library. For GPU Coder to replace
high-level math functions to library calls, the following conditions must be met:

• GPU-specific library replacement must exist for these functions.
• MATLAB Coder data size thresholds must be satisfied.

GPU Coder supports cuFFT, cuSOLVER, and cuBLAS library replacements for the functions listed in
the table. For functions that have no replacements in CUDA, GPU Coder uses portable MATLAB
functions that are mapped to the GPU.

MATLAB Function Description MATLAB Coder
LAPACK Support

cuBLAS, cuSOLVER,
cuFFT, Thrust Support

mtimes Matrix multiply Yes Yes
mldivide (‘\’) Solve system of linear

equation Ax=B for x
Yes Yes

lu LU matrix factorization Yes Yes
qr Orthogonal-triangular

decomposition
Yes Partial

det Matrix determinant Yes Yes
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MATLAB Function Description MATLAB Coder
LAPACK Support

cuBLAS, cuSOLVER,
cuFFT, Thrust Support

chol Cholesky factorization Yes Yes
rcond Reciprocal condition

number
Yes Yes

linsolve Solve system of linear
equations Ax=B

Yes Yes

eig Eigenvalues and eigen
vectors

Yes No

schur Schur decomposition Yes No
svd Singular value

decomposition
Yes Partial

fft,fft2,fftn Fast Fourier Transform Yes Yes
ifft,ifft2,ifftn Inverse Fast Fourier

Transform
Yes Yes

sort Sort array elements  Yes, using
gpucoder.sort

When you select the Enable cuFFT option in the GPU Coder app or use
config_object.GpuConfig.EnableCUFFT = true property in CLI, GPU Coder maps
fft,ifft,fft2,ifft2,fftn.ifftn function calls in your MATLAB code to the appropriate cuFFT
library calls. For 2-D transforms and higher, GPU Coder creates multiple 1-D batched transforms.
These batched transforms have higher performance than single transforms. GPU Coder only supports
out-of-place transforms. If Enable cuFFT is not selected, GPU Coder uses C FFTW libraries where
available or generates kernels from portable MATLAB FFT. Both single and double precision data
types are supported. Input and output can be real or complex-valued, but real-valued transforms are
faster. cuFFT library support input sizes that are typically specified as a power of 2 or a value that
can be factored into a product of small prime numbers. In general the smaller the prime factor, the
better the performance.

Note Using CUDA library names such as cufft, cublas, and cudnn as the names of your MATLAB
function results in code generation errors.

See Also
coder.gpu.kernel | coder.gpu.kernelfun | gpucoder.matrixMatrixKernel |
coder.gpu.constantMemory | gpucoder.stencilKernel | gpucoder.sort

Related Examples
• “Design Patterns” on page 2-26
• “Kernels from Element-Wise Loops” on page 2-2
• “Kernels from Scatter-Gather Type Operations” on page 2-4
• “Call Custom CUDA Device Function from the Generated Code” on page 2-22
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cuBLAS Example
This example multiplies two matrices A and B by using the cuBLAS library. The MATLAB
implementation of GEneral Matrix-Matrix Multiplication (GEMM) is:

function [C] = blas_gemm(A,B)

    C = zeros(size(A));
    C = A * B;
end

Generated CUDA Code
When you generate CUDA code, GPU Coder creates function calls to initialize the cuBLAS library,
perform matrix-matrix operations, and release hardware resources that the cuBLAS library uses. The
following is a snippet of the generated CUDA code.
   cublasEnsureInitialization();
  blas_gemm_kernel1<<<dim3(2048U, 1U, 1U), dim3(512U, 1U, 1U)>>>(gpu_C);
  alpha1 = 1.0;
  beta1 = 0.0;
  cudaMemcpy((void *)gpu_alpha1, (void *)&alpha1, 8ULL, cudaMemcpyHostToDevice);
  cudaMemcpy((void *)gpu_A, (void *)A, 8388608ULL, cudaMemcpyHostToDevice);
  cudaMemcpy((void *)gpu_B, (void *)B, 8388608ULL, cudaMemcpyHostToDevice);  
  cudaMemcpy(gpu_beta1, &beta1, 8ULL, cudaMemcpyHostToDevice);
  cublasDgemm(cublasGlobalHandle, CUBLAS_OP_N, CUBLAS_OP_N, 1024, 1024, 1024,
             (double *)gpu_alpha1, (double *)&gpu_A[0], 1024, (double *)&gpu_B
              [0], 1024, (double *)gpu_beta1, (double *)&gpu_C[0], 1024);
  cublasEnsureDestruction();
  cudaMemcpy((void *)C, (void *)gpu_C, 8388608ULL, cudaMemcpyDeviceToHost);

To initialize the cuBLAS library and create a handle to the cuBLAS library context, the function
cublasEnsureInitialization() calls cublasCreate() cuBLAS API. It allocates hardware
resources on the host and device.
static void cublasEnsureInitialization(void)
{
  if (cublasGlobalHandle == NULL) {
    cublasCreate(&cublasGlobalHandle);
    cublasSetPointerMode(cublasGlobalHandle, CUBLAS_POINTER_MODE_DEVICE);
  }
}

blas_gemm_kernel1 initializes the result matrix C to zero. This kernel is launched with 2048 blocks
and 512 threads per block. These block and thread values correspond to the size of C.
static __global__ __launch_bounds__(512, 1) void blas_gemm_kernel1(real_T *C)
{
  int32_T threadIdX;
  threadIdX = (int32_T)(blockDim.x * blockIdx.x + threadIdx.x);
  if (!(threadIdX >= 1048576)) {
    C[threadIdX] = 0.0;
  }
}

Calls to cudaMemcpy transfer the matrices A and B from the host to the device. The function
cublasDgemm is a level-3 Basic Linear Algebra Subprogram (BLAS3) that performs the matrix-matrix
multiplication:

C = αAB + βC

where α and β are scalars, and A, B, and C are matrices stored in column-major format.
CUBLAS_OP_N controls transpose operations on the input matrices.
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The final calls are to cublasEnsureDestruction() and another cudaMemcpy.
cublasEnsureDestruction() calls cublasCreate() cuBLAS API to release hardware resources
the cuBLAS library uses. cudaMemcpy copies the result matrix C from the device to the host.

static void cublasEnsureDestruction(void)
{
  if (cublasGlobalHandle != NULL) {
    cublasDestroy(cublasGlobalHandle);
    cublasGlobalHandle = NULL;
  }
}

Prepare blas_gemm for Kernel Creation
GPU Coder requires no special pragma to generate calls to libraries. There are two ways to generate
CUDA kernels — coder.gpu.kernelfun and coder.gpu.kernel. In this example, we utilize the
coder.gpu.kernelfun pragma to generate CUDA kernels. The modified blas_gemm function is:

function [C] = blas_gemm(A,B) %#codegen
    C = coder.nullcopy(zeros(size(A));

    coder.gpu.kernelfun;
    C = A * B;
end

Note A minimum size (128 elements) is required on the input data for replacing math operators and
functions with cuBLAS library implementations.
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cuSOLVER Example
This example solves the systems of linear equations Ax = B for x by using the cuSOLVER library.
The matrices A and B must have the same number of rows. If A is a scalar, then A\B is equivalent to
A.\B. If A is a square n-by-n matrix and B is a matrix with n rows, then x = A\B is a solution to the
equation A*x = B, if it exists. The MATLAB implementation of backslash is:

function [x] = backslash(A,b)
if (isscalar(A))
    x = coder.nullcopy(zeros(size(b)));
else
    x = coder.nullcopy(zeros(size(A,2),size(b,2)));
end

x = A\b;

end

Prepare backslash for Kernel Creation
GPU Coder requires no special pragma to generate calls to libraries. Just as before, there are two
ways to generate CUDA kernels — coder.gpu.kernelfun and coder.gpu.kernel. In this
example, we utilize the coder.gpu.kernelfun pragma to generate CUDA kernels. The modified
backslash function is:

function [x] = backslash(A,b) %#codegen

if (isscalar(A))
    x = coder.nullcopy(zeros(size(b)));
else
    x = coder.nullcopy(zeros(size(A,2),size(b,2)));
end

coder.gpu.kernelfun()
x = A\b;

end

Note A minimum size is required on the input data for replacing math operators and functions with
cuSOLVER library implementations. The minimum threshold is 128 elements.

Generated CUDA Code
When you generate CUDA code, GPU Coder creates function calls to initialize the cuSOLVER library,
perform mldivide operations, and release hardware resources that the cuSOLVER library uses. A
snippet of the generated CUDA code is:
  cusolverEnsureInitialization();

  /*    Copyright 2017 The MathWorks, Inc. */
  cudaMemcpy(b_gpu_A, A, 1152UL, cudaMemcpyHostToDevice);  
  blackslash_kernel1<<<dim3(1U, 1U, 1U), dim3(160U, 1U, 1U)>>>(b_gpu_A,gpu_A);
  cudaMemcpy(b_A, gpu_A, 1152UL, cudaMemcpyDeviceToHost);
  cusolverDnDgetrf_bufferSize(cusolverGlobalHandle, 12, 12, &gpu_A[0], 12,
    &cusolverWorkspaceReq);
  cusolverWorkspaceTypeSize = 8;
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  cusolverInitWorkspace();
  cudaMemcpy(gpu_A, b_A, 1152UL, cudaMemcpyHostToDevice);
  cusolverDnDgetrf(cusolverGlobalHandle, 12, 12, &gpu_A[0], 12, (real_T *)
                   cusolverWorkspaceBuff, &gpu_ipiv_t[0], gpu_info_t);
  A_dirtyOnGpu = true;
  cudaMemcpy(&info_t, gpu_info_t, 4UL, cudaMemcpyDeviceToHost);

To initialize the cuSOLVER library and create a handle to the cuSOLVER library context, the function
cusolversEnsureInitialization() calls cusolverDnCreate() cuSOLVER API. It allocates
hardware resources on the host and device.

static void cusolverEnsureInitialization(void)
{
  if (cusolverGlobalHandle == NULL) {
    cusolverDnCreate(&cuSolverGlobalHandle);
  }
}

backslash_kernel1 zero pads the matrix A. This kernel is launched with a single block of 512
threads.
static __global__ __launch_bounds__(160, 1) void backslash_kernel1(const real_T *
  A, real_T *b_A)
{
  int32_T threadId;
  ;
  ;
  threadId = (int32_T)(((gridDim.x * gridDim.y * blockIdx.z + gridDim.x *
    blockIdx.y) + blockIdx.x) * (blockDim.x * blockDim.y * blockDim.z) +
                       (int32_T)((threadIdx.z * blockDim.x * blockDim.y +
    threadIdx.y * blockDim.x) + threadIdx.x));
  if (!(threadId >= 144)) {
    /*    Copyright 2017 The MathWorks, Inc. */
    b_A[threadId] = A[threadId];
  }
}

Calls to cudaMemcpy transfer the matrix A from the host to the device. The function
cusolverDnDgetrf computes the LU factorization of an m×n matrix:

P*A = L*U

where A is an m×n matrix, P is a permutation matrix, L is a lower triangular matrix with unit
diagonal, and U is an upper triangular matrix.

cuSOLVER Standalone Code
For functions like qr that only have partial support in cuSOLVER, GPU Coder uses LAPACK library
where necessary. For MEX functions, the code generator uses the LAPACK library that is included
with MATLAB. For standalone code, the code generator uses the LAPACK library that you specify. To
specify the LAPACK library:

• At the command line, define your own coder.LAPACKCallback class containing the LAPACK
library information and assign it to the CustomLAPACKCallback property of the code
configuration object.

• In the GPU Coder app, set Custom LAPACK library callback to your LAPACK library.

For example, to generate a standalone executable, you can use the following code generation script.
Here myLAPACK is the name of the custom coder.LAPACKCallback class containing the LAPACK
library information.
cfg = coder.gpuConfig('exe');
cfg.CustomLAPACKCallback = 'myLAPACK';
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cfg.GenerateExampleMain = 'GenerateCodeAndCompile';

classdef myLAPACK < coder.LAPACKCallback
    methods (Static)
        function hn = getHeaderFilename()
            hn = 'lapacke.h';
        end
        function updateBuildInfo(buildInfo, buildctx)
            [~,linkLibExt] = buildctx.getStdLibInfo();
            cudaPath = getenv('CUDA_PATH'); 
            libPath = 'lib\x64';            
            
            buildInfo.addIncludePaths(fullfile(cudaPath,'include'));
            libName = 'cusolver';
            libPath = fullfile(cudaPath,libPath);
            buildInfo.addLinkObjects([libName linkLibExt], libPath, ...
                '', true, true);
            
            lapackLocation = 'C:\LAPACK\win64'; % specify path to LAPACK libraries 
            
            includePath = fullfile(lapackLocation,'include');
            buildInfo.addIncludePaths(includePath);
            libPath = fullfile(lapackLocation,'lib');
            libName = 'mllapack';
            
            buildInfo.addLinkObjects([libName linkLibExt], libPath, ...
                '', true, true);
            buildInfo.addDefines('HAVE_LAPACK_CONFIG_H');
            buildInfo.addDefines('LAPACK_COMPLEX_STRUCTURE');
        end
    end
end

For more information, see “Speed Up Linear Algebra in Generated Standalone Code by Using
LAPACK Calls”.
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FFT Example
This example shows how a two-dimensional Fourier transform can be used on an optical mask to
compute its diffraction pattern. Create a logical array that defines an optical mask with a small,
circular aperture.

n = 2^10;                 % size of mask
M = zeros(n);
I = 1:n; 
x = I-n/2;                % mask x-coordinates 
y = n/2-I;                % mask y-coordinates
[X,Y] = meshgrid(x,y);    % create 2-D mask grid
R = 10;                   % aperture radius
A = (X.^2 + Y.^2 <= R^2); % circular aperture of radius R
M(A) = 1;                 % set mask elements inside aperture to 1
figure
imagesc(M)                % plot mask
axis image

DP = fftshift(fft2(M));
imagesc(abs(DP))
axis image

Prepare myFFT for Kernel Creation
Create an entry-point function myFFT that computes the 2-D Fourier transform of the mask by using
the fft2 function. Use the fftshift function to rearrange the output so that the zero-frequency
component is at the center. To map this function to a GPU kernel, place the coder.gpu.kernelfun
pragma within the function.

function [DP] = myFFT(M)

coder.gpu.kernelfun();

DP = fftshift(fft2(M));
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Generated CUDA Code
When you generate CUDA code, GPU Coder creates function calls (cufftEnsureInitialization)
to initialize the cuFFT library, perform FFT operations, and release hardware resources that the
cuFFT library uses. A snippet of the generated CUDA code is:
void myFFT(myFFTStackData *SD, const real_T M[1048576], creal_T DP[1048576])
 {
  ...
  cudaMemcpy((void *)gpu_M, (void *)M, 8388608ULL, cudaMemcpyHostToDevice);
  myFFT_kernel1<<<dim3(2048U, 1U, 1U), dim3(512U, 1U, 1U)>>>(gpu_M, gpu_b);
  cufftEnsureInitialization(1024, CUFFT_D2Z, 1024, 1024);
  cufftExecD2Z(*cufftGlobalHandlePtr, (cufftDoubleReal *)&gpu_b[0],
               (cufftDoubleComplex *)&gpu_y1[0]);
  ...
  myFFT_kernel2<<<dim3(2048U, 1U, 1U), dim3(512U, 1U, 1U)>>>(gpu_y1, gpu_y);
  cufftEnsureInitialization(1024, CUFFT_Z2Z, 1024, 1024);
  cufftExecZ2Z(*cufftGlobalHandlePtr, (cufftDoubleComplex *)&gpu_y[0],
               (cufftDoubleComplex *)&gpu_DP[0], CUFFT_FORWARD);
  ...
  cufftEnsureDestruction();
  ...
 }

The first cudaMemcpy function call transfers the 1024x1024 double-valued input M to the GPU
memory. The myFFT_kernel1 kernel performs pre-processing of the input data before the cuFFT
library calls. The two-dimensional Fourier transform call fft2 is equivalent to computing
fft(fft(M).').'. Because batched transforms generally have higher performance compared to
single transforms, GPU Coder has two 1-D cuFFT calls cufftExecD2Z to compute the double-
precision real-to-complex forward transform of the input M followed by cufftExecZ2Z to perform the
double-precision complex-to-complex transform of the result. The cufftEnsureDestruction() call
destroys and frees all GPU resources associated with the cuFFT library call.
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Thrust Example
With Thrust library support in GPU Coder, you can take advantage of GPU-accelerated primitives
such as sort to implement complex high-performance parallel applications. When your MATLAB code
uses gpucoder.sort function instead of sort, GPU Coder can generate calls to the Thrust sort
primitives.

This example generates CUDA code to sort the columns of a matrix in descending order. In one file,
write an entry-point function mySort that accepts a matrix inputs A. Use the gpucoder.sort
function to sort the columns of A in descending order.

function B = mySort(A)
     B = gpucoder.sort(A, 1, 'descend');
end

Use the codegen function to generate CUDA MEX function.
codegen -config coder.gpuConfig('mex') -args {ones(1024,1024,'double')} -report mySort

Generated CUDA Code
The following is a snippet of the generated code. The Thrust library call is denoted by
thrustSortImpl
...
cudaMalloc(&gpu_inDims, 8ULL);
cudaMalloc(&gpu_B, 8388608ULL);
cudaMalloc(&gpu_A, 8388608ULL);
mySort_kernel1<<<dim3(1U, 1U, 1U), dim3(32U, 1U, 1U)>>>(*gpu_inDims);
cudaMemcpy(gpu_A, (void *)&A[0], 8388608ULL, cudaMemcpyHostToDevice);
mySort_kernel2<<<dim3(2048U, 1U, 1U), dim3(512U, 1U, 1U)>>>(*gpu_A, *gpu_B);
cudaMemcpy(&inDims[0], gpu_inDims, 8ULL, cudaMemcpyDeviceToHost);
thrustSortImpl(&(*gpu_B)[0], 2, &inDims[0], 1, 'd', false);
cudaMemcpy(&B[0], gpu_B, 8388608ULL, cudaMemcpyDeviceToHost);
...
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Call Custom CUDA Kernels from the Generated Code
From within your MATLAB code, you can directly call external CUDA kernels, also called custom code
or legacy code. To call CUDA kernels, use coder.ceval. The code generator integrates your CUDA
kernel into the CUDA code generated from MATLAB. Integrate code when there are external
libraries, optimized code, or object files developed using CUDA that you want to use with your
generated code.

The external CUDA kernel must use the __global__ qualifier to execute the function (kernels) on
the GPU device and to call the function from the host or from the device. Functions with the
__device__ qualifier are called device functions. The device functions are different from global
functions in that they can only be called from other device or global functions. For information on
integrating custom device functions, see “Call Custom CUDA Device Function from the Generated
Code” on page 2-22.

Note Use coder.ceval only in MATLAB code intended for code generation. coder.ceval
generates an error in uncompiled MATLAB code. To determine if a MATLAB function is executing in
MATLAB, use coder.target. If the function is executing in MATLAB, call the MATLAB version of the
CUDA kernel.

Call Custom CUDA Kernel

This example shows how to integrate a simple CUDA kernel with MATLAB code by using
coder.ceval. Consider the MATLAB function, saxpy:

type saxpy.m

function y = saxpy(a,x,y)
    y = a*x + y;
end

For this example, suppose that you want to implement the a x plus y operation by using external
CUDA kernel. Consider the CUDA kernel, saxpy_kernel, implemented in the file saxpy.cu:

type saxpy.cu

#include "saxpy.h"

__global__
void saxpy_kernel(uint32_T n, real32_T a, real32_T *x, real32_T *y)
{
  int i = blockIdx.x*blockDim.x + threadIdx.x;
  if (i < n) y[i] = a*x[i] + y[i];
}

To integrate saxpy_kernel with your MATLAB code, you need a header file that contains the
function prototype. See the file saxpy.h:

type saxpy.h

#ifndef real32_T 
#define real32_T float
#define uint32_T unsigned int
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#endif

#define saxpy(grid,block,n,a,x,y) saxpy_kernel<<<grid,block>>>(n,a,x,y)

__global__ void saxpy_kernel(uint32_T n, real32_T a, real32_T *x, real32_T *y);

This example generates CUDA MEX, uint32_T and real32_T are custom types used in the
generated MEX code. The code generator produces data types in CUDA code that correspond to the
data types that you use in your MATLAB code. The data types that are generated depend on the
target platform and compiler. The code generator can produce either built-in CUDA/C++ data types,
such as short, long, int, and so on, or custom data types defined by using typedef statements. By
default, the code generator produces built-in types for standalone code (lib, dll, or exe) and custom
types for MEX code. For more information, see “Mapping MATLAB Types to Types in Generated
Code”.

Entry-Point Function

Use the coder.ceval command to call the CUDA kernel in the saxpyRef.m entry-point function.
Use coder.ceval only in MATLAB code intended for code generation. The coder.rref and
coder.ref commands instruct the code generator to pass pointers to the arrays, rather than copy
them.

type saxpyRef.m

function y = saxpyRef(a,x,y)
%   saxpyRef Entry-point function for computing single-precision (A*X) Plus
%   Y

%   Copyright 2022 The MathWorks, Inc.
coder.gpu.kernelfun;

if coder.target('MATLAB')
    y = a*x + y;
else
    coder.ceval('saxpy', uint32(floor((numel(x)+255)/256)), uint32(256), ...
        uint32(numel(x)), single(a), coder.rref(x,'gpu'), ...
        coder.ref(y,'gpu'));
end
end

Generate CUDA Code

To generate CUDA code, create a GPU code configuration object. Specify the location of the custom
CUDA files by setting custom code properties on the configuration object. For more information, see
“Configure Build for External C/C++ Code”.

cfg = coder.gpuConfig("mex");
cfg.GenerateReport = true;
cfg.CustomSource = "saxpy.cu";
cfg.CustomInclude = pwd;
cfg.CustomSourceCode = '#include "saxpy.h"';

aType = coder.newtype('single', [1 1], [0 0]);
xType = coder.newtype('single', [4096 256], [0 0]);
yType = coder.newtype('single', [4096 256], [0 0]);
inputArgs = {aType,xType,yType};

codegen -config cfg saxpyRef -args inputArgs
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Code generation successful: View report

Generated Code

To compare your generated CUDA code to the original MATLAB code, open the CUDA file,
saxyRef.cu in the work\codegen\mex\saxpyRef folder.

#include "saxpy.h"
// Function Definitions
void saxpyRef(real32_T a, const real32_T x[1048576], real32_T y[1048576])
{
  real32_T(*gpu_x)[1048576];
  real32_T(*gpu_y)[1048576];
  cudaMalloc(&gpu_y, 4194304UL);
  cudaMalloc(&gpu_x, 4194304UL);
  //    saxpyRef Entry-point function for computing single-precision (A*X) Plus
  //    Y
  //    Copyright 2022 The MathWorks, Inc.
  cudaMemcpy(*gpu_x, x, 4194304UL, cudaMemcpyHostToDevice);
  cudaMemcpy(*gpu_y, y, 4194304UL, cudaMemcpyHostToDevice);
  saxpy(4096U, 256U, 1048576U, a, &(*gpu_x)[0], &(*gpu_y)[0]);
  cudaMemcpy(y, *gpu_y, 4194304UL, cudaMemcpyDeviceToHost);
  cudaFree(*gpu_x);
  cudaFree(*gpu_y);
}

Run Generated MEX

Run the generated MEX with random inputs and compare the results with MATLAB simulation.

a = single(15);
x = randi(10,4096,256,'single');
y = zeros(4096,256,'single');

yMATLAB = saxpyRef(a,x,y);
yGPU = saxpyRef_mex(a,x,y);

if (yGPU - yMATLAB == 0)
    fprintf('\nMATLAB simulation matches GPU execution.\n');
end

MATLAB simulation matches GPU execution.

See Also
Functions
codegen | coder.wref | coder.ceval | coder.rref | coder.ref | coder.cinclude

Objects
coder.gpuConfig | coder.CodeConfig | coder.EmbeddedCodeConfig |
coder.MexCodeConfig

More About
• “Call Custom CUDA Device Function from the Generated Code” on page 2-22
• “Configure Build for External C/C++ Code”
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• “Mapping MATLAB Types to Types in Generated Code”
• “Kernels from Element-Wise Loops” on page 2-2
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Call Custom CUDA Device Function from the Generated Code
If you have highly optimized CUDA code for certain subfunctions that you want to incorporate into
your generated code, GPU Coder extends the coder.ceval functionality to help you achieve this
goal.

The external CUDA function must use the __device__ qualifier to execute the function on the GPU
device. These device functions are different from global functions (kernels) in that they can only be
called from other device or global functions. Therefore the coder.ceval calls to the device functions
must be from within a loop that gets mapped to a kernel. For information on integrating CUDA
kernels with the generated code, see “Call Custom CUDA Kernels from the Generated Code” on page
2-18.

Note Code generation fails if the loop containing the coder.ceval calls cannot be mapped to a
kernel. See the troubleshooting topic in the GPU Coder documentation to check for issues preventing
kernel creation and their suggested workarounds. If your MATLAB code section contains unsupported
functions, then you must remove the coder.ceval calls from such sections.

Call __usad4_wrap CUDA Device Function
The stereo disparity example measures the distance between two corresponding points in the left and
the right image of a stereo pair. The stereoDisparity_cuda_sample entry-point function calls the
__usad4_wrap external device function by using the coder.ceval function.
%% modified algorithm for stereo disparity block matching
% In this implementation instead of finding shifted image ,indices are mapped 
% accordingly to save memory and some processing RGBA column major packed 
% data is used as input for compatibility with CUDA intrinsics. Convolution
% is performed using separable filters (Horizontal and then Vertical)

function [out_disp] = stereoDisparity_cuda_sample(img0,img1)
coder.cinclude('cuda_intrinsic.h');

% gpu code generation pragma
coder.gpu.kernelfun;

%% Stereo disparity Parameters
% WIN_RAD is the radius of the window to be operated,min_disparity is the 
% minimum disparity level the search continues for, max_disparity is the maximum
% disparity level the search continues for.
WIN_RAD = 8;
min_disparity = -16;
max_disparity = 0;

%% Image dimensions for loop control
% The number of channels packed are 4 (RGBA) so as nChannels are 4
[imgHeight,imgWidth]=size(img0);
nChannels = 4;
imgHeight = imgHeight/nChannels;

%% To store the raw differences
diff_img = zeros([imgHeight+2*WIN_RAD,imgWidth+2*WIN_RAD],'int32');

%To store the minimum cost
min_cost = zeros([imgHeight,imgWidth],'int32');
min_cost(:,:) = 99999999;

% Store the final disparity
out_disp = zeros([imgHeight,imgWidth],'int16');

%% Filters for aggregating the differences
% filter_h is the horizontal filter used in separable convolution
% filter_v is the vertical filter used in separable convolution which
% operates on the output of the row convolution
filt_h = ones([1 17],'int32');
filt_v = ones([17 1],'int32');
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%% Main Loop that runs for all the disparity levels. This loop is currently
% expected to run on CPU.
for d=min_disparity:max_disparity
    
    % Find the difference matrix for the current disparity level. Expect
    % this to generate a Kernel function.
    coder.gpu.kernel;
    for colIdx=1:imgWidth+2*WIN_RAD
        coder.gpu.kernel;
        for rowIdx=1:imgHeight+2*WIN_RAD
            % Row index calculation
            ind_h = rowIdx - WIN_RAD;
            
            % Column indices calculation for left image
            ind_w1 = colIdx - WIN_RAD;
            
            % Row indices calculation for right image
            ind_w2 = colIdx + d - WIN_RAD;
            
            % Border clamping for row Indices
            if ind_h <= 0
                ind_h = 1;
            end
            if ind_h > imgHeight
                ind_h = imgHeight;
            end
            
            % Border clamping for column indices for left image
            if ind_w1 <= 0
                ind_w1 = 1;
            end
            if ind_w1 > imgWidth
                ind_w1 = imgWidth;
            end
            
            % Border clamping for column indices for right image
            if ind_w2 <= 0
                ind_w2 = 1;
            end
            if ind_w2 > imgWidth
                ind_w2 = imgWidth;
            end
            
            % In this step, Sum of absolute Differences is performed
            % across Four channels. This piece of code is suitable 
            % for replacement with SAD intrinsics
            tDiff = int32(0);
            tDiff = coder.ceval('-gpudevicefcn', '__usad4_wrap', 
                    coder.rref(img0((ind_h-1)*(nChannels)+1,ind_w1)), 
                    coder.rref(img1((ind_h-1)*(nChannels)+1,ind_w2)));
            
            %Store the SAD cost into a matrix
            diff_img(rowIdx,colIdx) = tDiff;
        end
    end
    
    % Aggregating the differences using separable convolution. Expect this 
    % to generate two Kernel using shared memory.The first kernel is the 
    % convolution with the horizontal kernel and second kernel operates on
    % its output the column wise convolution.
    cost_v = conv2(diff_img,filt_h,'valid');
    cost = conv2(cost_v,filt_v,'valid');
    
    % This part updates the min_cost matrix with by comparing the values
    % with current disparity level. Expect to generate a Kernel for this.
    for ll=1:imgWidth
        for kk=1:imgHeight
            % load the cost
            temp_cost = int32(cost(kk,ll));
            
            % compare against the minimum cost available and store the
            % disparity value
            if min_cost(kk,ll) > temp_cost
                min_cost(kk,ll) = temp_cost;
                out_disp(kk,ll) = abs(d) + 8;
            end
            
        end
    end
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end
end

The definition for the __usad4_wrap is written in an external file cuda_intrinsic.h. The file is
located in the same folder as the entry-point function.
__device__ unsigned int __usad4(unsigned int A, unsigned int B, unsigned int C=0)
{
    unsigned int result;
#if (__CUDA_ARCH__ >= 300) // Kepler (SM 3.x) supports a 4 vector SAD SIMD
    asm("vabsdiff4.u32.u32.u32.add" " %0, %1, %2, %3;": "=r"(result):"r"(A),
    "r"(B), "r"(C));
#else // SM 2.0            // Fermi  (SM 2.x) supports only 1 SAD SIMD, 
                           // so there are 4 instructions
    asm("vabsdiff.u32.u32.u32.add" " %0, %1.b0, %2.b0, %3;": 
         "=r"(result):"r"(A), "r"(B), "r"(C));
    asm("vabsdiff.u32.u32.u32.add" " %0, %1.b1, %2.b1, %3;": 
         "=r"(result):"r"(A), "r"(B), "r"(result));
    asm("vabsdiff.u32.u32.u32.add" " %0, %1.b2, %2.b2, %3;": 
         "=r"(result):"r"(A), "r"(B), "r"(result));
    asm("vabsdiff.u32.u32.u32.add" " %0, %1.b3, %2.b3, %3;": 
         "=r"(result):"r"(A), "r"(B), "r"(result));
#endif
    return result;
}

__device__ unsigned int packBytes(const uint8_T *inBytes)
{
    unsigned int packed = inBytes[0] | (inBytes[1] << 8) | 
                    (inBytes[2] << 16) | (inBytes[3] << 24);
    return packed;
}

__device__ unsigned int __usad4_wrap(const uint8_T *A, const uint8_T *B)
{
    unsigned int x = packBytes(A);
    unsigned int y = packBytes(B);

    return __usad4(x, y);
}

Generate CUDA Code
Generate CUDA code by creating a code configuration object. Specify the location of the custom C
files by setting custom code properties (CustomInclude) on configuration objects. The following is
an example code generation script that points to the location of cuda_intrinsic.h file.
cfg = coder.gpuConfig('mex');
cfg.CustomInclude = pwd;

codegen -config cfg -args {imgRGB0, imgRGB1} stereoDisparity_cuda_sample_intrinsic;

Generated Code
GPU Coder creates four kernels. The following is a snippet of the generated CUDA code.
e_stereoDisparity_cuda_sample_i<<<dim3(704U, 1U, 1U), dim3(512U, 1U, 1U)>>>
                    (gpu_img1, gpu_img0, d, gpu_diff_img);*/
/*  Aggregating the differences using separable convolution.*/ 
/*  Expect this to generate two Kernel using shared memory.*/
/*  The first kernel is the convolution with the horizontal kernel and*/
/*  second kernel operates on its output the column wise convolution. */
f_stereoDisparity_cuda_sample_i<<<dim3(704U, 1U, 1U), dim3(512U, 1U, 1U)>>>
                    (gpu_diff_img, gpu_a);
g_stereoDisparity_cuda_sample_i<<<dim3(18U, 20U, 1U), dim3(32U, 32U, 1U)>>>
                    (gpu_a, gpu_cost_v);
h_stereoDisparity_cuda_sample_i<<<dim3(17U, 20U, 1U), dim3(32U, 32U, 1U)>>>
                    (gpu_a, gpu_cost_v);
/*  This part updates the min_cost matrix with by comparing the values */
/*  with current disparity level. Expect to generate a Kernel for this. */
i_stereoDisparity_cuda_sample_i<<<dim3(667U, 1U, 1U), dim3(512U, 1U, 1U)>>>
                    (d, gpu_cost, gpu_out_disp, gpu_min_cost);
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The e_stereoDisparity_cuda_sample_i kernel is the one that calls the __usad4_wrap device
function. The following is a snippet of e_stereoDisparity_cuda_sample_i kernel code.
static __global__ __launch_bounds__(512, 1) void e_stereoDisparity_cuda_sample_i
  (const uint8_T *img1, const uint8_T *img0, int32_T d, int32_T *diff_img)
{
  ...
    /*  In this step, Sum of absolute Differences is performed */
    /*  across Four channels. This piece of code is suitable */
    /*  for replacement with SAD intrinsics */
    temp_cost = __usad4_wrap(&img0[((ind_h - 1) << 2) + 2132 * (ind_w1 - 1)],
      &img1[((ind_h - 1) << 2) + 2132 * (temp_cost - 1)]);

    /* Store the SAD cost into a matrix */
    diff_img[rowIdx + 549 * colIdx] = temp_cost;
  }
}

See Also
Functions
codegen | coder.wref | coder.ceval | coder.rref | coder.ref | coder.cinclude

Objects
coder.gpuConfig | coder.CodeConfig | coder.EmbeddedCodeConfig |
coder.MexCodeConfig

More About
• “Call Custom CUDA Kernels from the Generated Code” on page 2-18
• “Configure Build for External C/C++ Code”
• “Mapping MATLAB Types to Types in Generated Code”
• “Kernels from Element-Wise Loops” on page 2-2
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Design Patterns
GPU Coder supports some design patterns that map efficiently to GPU structures.

Stencil Processing
Stencil kernel operations compute each element of the output array as a function of a small region of
the input array. You can express many filtering operations as a stencil operation. Examples include
convolution, median filtering, and finite element methods.

In the GPU Coder implementation of the stencil kernel, each thread computes one element of the
output array. Because a given input element is accessed repeatedly for computing multiple
neighboring output elements, GPU Coder uses shared memory to improve memory bandwidth and
data locality.

Use the stencilfun function and create CUDA code for stencil functions. For an example that
demonstrates stencil preocessing, see “Stencil Processing on GPU” on page 2-74.

Note Starting in R2022b, generate CUDA kernels for stencil like operations by using stencilfun
function. gpucoder.stencilKernel is not recommended.

For very large input sizes, the stencilfun function may produce CUDA code that does not
numerically match the MATLAB simulation. In such cases, consider reducing the size of the input to
produce accurate results.

Matrix-Matrix Processing
Many scientific applications contain matrix-matrix operations including the GEneral Matrix to Matrix
Multiplication (GEMM), of the form C = AB where you can optionally transpose A and B. The code for
such matrix-matrix operations typically takes the pattern:

for x = 1:M
    for y = 1:N
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        for z = 1:K
            C(x,y) = F(A(x,z),B(z,y));
        end
    end
end

where F() is a user-defined function. In these operations, a row from one input matrix and a column
from the second input matrix is used to compute the corresponding element of the output matrix.
Every thread reloads the row and column. This design pattern allows optimization of this structure by
reusing data and making each thread compute multiple output elements.

For example, F() can be a regular matrix multiply, F()=@mtimes. For such patterns, GPU Coder
provides the MatrixMatrix kernel to create a highly efficient, fast implementation of matrix-matrix
operations on the GPU.

Use the gpucoder.matrixMatrixKernel function and create CUDA code for performing matrix-
matrix type operations.

See Also
coder.gpu.kernel | coder.gpu.kernelfun | gpucoder.matrixMatrixKernel |
coder.gpu.constantMemory | gpucoder.stencilKernel

Related Examples
• “Stencil Processing on GPU” on page 2-74

More About
• “Kernels from Element-Wise Loops” on page 2-2
• “Kernels from Scatter-Gather Type Operations” on page 2-4
• “Kernels from Library Calls” on page 2-8
• “Call Custom CUDA Device Function from the Generated Code” on page 2-22
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GPU Memory Allocation and Minimization

Discrete and Managed Modes
GPU Coder provides you access to two different memory allocation (malloc) modes available in the
CUDA programming model, cudaMalloc and cudaMallocManaged. cudaMalloc API is applicable
to the traditionally separate CPU, and GPU global memories. cudaMallocManaged is applicable to
Unified Memory.

From a programmer point of view, a traditional computer architecture requires that data be allocated
and shared between the CPU and GPU memory spaces. The need for applications to manage data
transfers between these two memory spaces adds to increased complexity. Unified memory creates a
pool of managed memory, shared between the CPU and the GPU. The managed memory is accessible
to both the CPU and the GPU through a single pointer. Unified memory attempts to optimize memory
performance by migrating data to the device that needs it, at the same time hiding the migration
details from the program. Though unified memory simplifies the programming model, it requires
device-sync calls when data written on the GPU is being accessed on the CPU. GPU Coder inserts
these synchronization calls. According to NVIDIA, unified memory can provide significant
performance benefits when by using CUDA 8.0, or when targeting embedded hardware like the
NVIDIA Tegra®.

To change the memory allocation mode in the GPU Coder app, use the Malloc Mode drop-down box
under More Settings->GPU Coder. When using the command-line interface, use the MallocMode
build configuration property and set it to either 'discrete' or 'unified'.

Note In a future release, the unified memory allocation (cudaMallocManaged) mode will be
removed when targeting NVIDIA GPU devices on the host development computer. You can continue to
use unified memory allocation mode when targeting NVIDIA embedded platforms.

GPU Memory Manager
You can use the GPU memory manager for efficient memory allocation, management, and improving
run-time performance. The GPU memory manager creates a collection of large GPU memory pools
and manages allocation and deallocation of chunks of memory blocks within these pools. By creating
large memory pools, the memory manager reduces the number of calls to the CUDA memory APIs,
improving run-time performance. You can use the GPU memory manager for MEX and standalone
CUDA code generation.

To enable the GPU memory manager, use one of these methods:

• In a GPU code configuration object (coder.gpuConfig), enable the MemoryManager property.
• In the GPU Coder app, on the GPU Code tab, select GPU Memory Manager.
• In the Simulink® Configuration Parameters dialog box, Code Generation > GPU Code pane,

select the Memory manager parameter.

For CUDA code that uses NVIDIA CUDA libraries, such as cuFFT, cuBLAS, and cuSOLVER, you can
enable the use of GPU memory manager for efficient memory allocation and management.

To use memory pools with CUDA libraries, enable the memory manager using one the methods above
and:
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• In the GPU code configuration object (coder.gpuConfig), enable the EnableCUFFT,
EnableCUBLAS, or EnableCUSOLVER properties.

• In the GPU Coder app, on the GPU Code tab, select Enable cuFFT, Enable cuBLAS, or Enable
cuSOLVER.

• In the Simulink Configuration Parameters dialog box, Code Generation > GPU Code pane,
select the cuFFT, cuBLAS, or cuSOLVER parameters.

Customization options for GPU memory pools

The GPU memory manager provides additional code configuration parameters listed in the table to
manage allocation and deallocation of memory blocks within GPU memory pools.

Code Configuration
Parameter

Description Value

In a GPU code configuration
object (coder.gpuConfig):
BlockAlignment

In the GPU Coder app: on the
GPU Code tab, Block
Alignment

Controls the alignment of the
blocks. The block sizes (bytes)
in the pool are a multiple of the
specified value.

Positive integer that is a power
of 2. Default value is 256.

In a GPU code configuration
object: FreeMode

In the GPU Coder app: on the
GPU Code tab, Free Mode

Controls when the memory
manager frees the GPU device
memory.

When set to 'Never', the
memory is freed only when the
memory manager is destroyed.

Use 'AtTerminate' to free
empty GPU pools when the
terminate function is called in
the generated code. For MEX
targets, memory is freed after
every call to the generated MEX
function. For other targets,
memory is freed when calling
the terminate function.

When set to
'AfterAllocate', empty
pools are freed after each call to
CUDA memory allocate.

'Never' (default) |
'AtTerminate' |
'AfterAllocate'

In a GPU code configuration
object: MinPoolSize

In the GPU Coder app: on the
GPU Code tab, Minimum Pool
Size

Specify the minimum pool size
in megabytes (MB).

Positive integer that is a power
of 2. Default value is 8.
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Code Configuration
Parameter

Description Value

In a GPU code configuration
object: MaxPoolSize

In the GPU Coder app: on the
GPU Code tab, Maximum Pool
Size

Specify the maximum pool size
in megabytes (MB).

The memory manager computes
the size levels using the
MinPoolSize and
MaxPoolSize parameters by
interpolating between the two
values in increasing powers of
2. For example, if the
MinPoolSize is 4 and the
MaxPoolSize is 1024, the size
levels are {4, 8, 16, 32, 64, 128,
256, 512, 1024}.

Positive integer that is a power
of 2. Default value is 2048.

Memory Minimization
GPU Coder analyzes the data dependency between CPU and GPU partitions and performs
optimizations to minimize the number of cudaMemcpy function calls in the generated code. The
analysis also determines the minimum set of locations where data must be copied between CPU and
GPU by using cudaMemcpy.

For example, the function foo has sections of code that process data sequentially on the CPU and in
parallel on the GPU.

function [out] = foo(input1,input2)
       …
     % CPU work
            input1 = …
            input2 = …
            tmp1 = …
            tmp2 = …
       …
     % GPU work
            kernel1(gpuInput1, gpuTmp1);
       kernel2(gpuInput2, gpuTmp1, gpuTmp2);
       kernel3(gpuTmp1, gpuTmp2, gpuOut);

       …
     % CPU work
       … = out

end

An unoptimized CUDA implementation can potentially have multiple cudaMemcpy function calls to
transfer all inputs gpuInput1,gpuInput2, and the temporary results gpuTmp1,gpuTmp2 between
kernel calls. Because the intermediate results gpuTmp1,gpuTmp2 are not used outside the GPU, they
can be stored within the GPU memory resulting in fewer cudaMemcpy function calls. These
optimizations improve overall performance of the generated code. The optimized implementation is:

gpuInput1 = input1;
gpuInput2 = input2;

2 Kernel Creation from MATLAB Code

2-30



kernel1<<< >>>(gpuInput1, gpuTmp1);
kernel2<<< >>>(gpuInput2, gpuTmp1, gpuTmp2);
kernel3<<< >>>(gpuTmp1, gpuTmp2, gpuOut);

out = gpuOut;

To eliminate redundant cudaMemcpy calls, GPU Coder analyzes all uses and definitions of a given
variable and uses status flags to perform minimization. An example of the original code and what the
generated code looks like is shown in this table.

Original Code Optimized Generated Code
A(:) = …
…
for i = 1:N
   gB = kernel1(gA);
   gA = kernel2(gB);

   if (somecondition)
      gC = kernel3(gA, gB);
   end
   …
end
…
… = C;

A(:) = …
A_isDirtyOnCpu = true;
…
for i = 1:N
   if (A_isDirtyOnCpu)
      gA = A;
      A_isDirtyOnCpu = false;
   end
   gB = kernel1(gA);
   gA = kernel2(gB);
   if (somecondition)
      gC = kernel3(gA, gB);
      C_isDirtyOnGpu = true;
   end
   …
end
…
if (C_isDirtyOnGpu)
   C = gC;
   C_isDirtyOnGpu = false;
end
… = C;

The _isDirtyOnCpu flag tells the GPU Coder memory optimization about routines where the given
variable is declared and used either on the CPU or on then GPU.

See Also
Apps
GPU Coder

Functions
codegen | coder.gpu.constantMemory | gpucoder.reduce

Objects
coder.gpuConfig | coder.CodeConfig | coder.EmbeddedCodeConfig |
coder.MexCodeConfig

More About
• “GPU Programming Paradigm”
• “Code Generation by Using the GPU Coder App”
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• “Code Generation Using the Command Line Interface”
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Use Dynamically Allocated C++ Arrays in Generated Function
Interfaces

In most cases, when you generate code for a MATLAB function that accepts or returns an array, there
is an array at the interface of the generated CUDA function. For an array size that is unknown at
compile time, or whose bound exceeds a predefined threshold, the memory for the generated array is
dynamically allocated.

By default, the dynamically allocated array is implemented by using the C style emxArray data
structure in the generated code. Alternatively, dynamically allocated array can be implemented as a
class template called coder::gpu_array in the generated code. coder::gpu_array offers several
advantages over emxArray style data structures:

• The generated code is exception safe
• Generated code is easier to read.
• Better C++ integration because of ease of initializing the input data and working with the output

data.
• Because coder::gpu_array is defined in a header file that ships with MATLAB, you can write

the interface code before the generating code.

To use dynamically allocated arrays in your custom CUDA code that you integrate with the generated
CUDA C++ functions, learn to use the coder::gpu_array template.

Change Interface Generation
By default, the generated CUDA code uses the C style emxArray data structure to implement
dynamically allocated arrays. Instead, you can choose to generate CUDA code that uses the
coder::gpu_array template to implement dynamically allocated arrays. To generate the
coder::gpu_array template, do one of the following:

• In a code configuration object (coder.MexCodeConfig, coder.CodeConfig, or
coder.EmbeddedCodeConfig), set the DynamicMemoryAllocationInterface parameter to
'C++'.

• In the GPU Coder app, on the Memory tab, set Dynamic memory allocation interface to Use
C++ coder::array.

Using the coder::gpu_array Class Template
When you generate CUDA code for your MATLAB functions, the code generator produces header files
coder_gpu_array.h and coder::array.h in the build folder. The coder_gpu_array.h header
file contains the definition of the class template gpu_array in the namespace coder and the
definitions for the function templates arrayCopyCpuToGpu and arrayCopyGpuToCpu. The
coder::gpu_array template implements the dynamically allocated arrays in the generated code.
The declaration for this template is:

template <typename T, int32_T N> class gpu_array

The array contains elements of type T and has N dimensions. For example, to declare a two-
dimensional dynamic array myArray that contains elements of type int32_T in your custom CUDA
code, use:
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coder::gpu_array<int32_T, 2> myArray

The function templates arrayCopyCpuToGpu and arrayCopyGpuToCpu implement data transfers
between the CPU and GPU memory. On the CPU, the dynamically allocated arrays are implemented
by using the coder::array template. For more information on the APIs you use to create and
interact with dynamic arrays in your custom code, see “Use Dynamically Allocated C++ Arrays in
Generated Function Interfaces”.

To use dynamically allocated arrays in your custom CUDA code that you want to integrate with the
generated code (for example, a custom main function), include the coder_gpu_array.h and
coder_array.h header files in your custom .cu files.

Generate C++ Code That Accepts and Returns a Variable-Size Numeric Array

This examples shows how to customize the generated example main function to use the
coder::gpu_array and coder::array class templates in your project.

Your goal is to generate a CUDA executable for xTest1 that can accept and return an array of
int32_T elements. You want the first dimension of the array to be singleton and the second
dimension to be unbounded.

1 Define a MATLAB function xTest1 that accepts an array X, adds the scalar A to each of its
elements, and returns the resulting array Y.

function Y = xTest1(X, A)
Y = X;
for i = 1:numel(X)
    Y(i) = X(i) + A;
end

2 Generate initial source code for xTest1 and move xTest1.h from the code generation folder to
your current folder. Use the following commands:

cfg = coder.gpuConfig('lib');
cfg.DynamicMemoryAllocationInterface = 'C++';
cfg.GenerateReport = true;
inputs = {coder.typeof(int32(0), [1 inf]), int32(0)};

codegen -config cfg -args inputs xTest1.m

The function prototype for xTest1 in the generated code is shown here:

extern void xTest1(const coder::array<int, 2U> &X, int A,
                   coder::array<int, 2U> &Y);

Interface the generated code by providing input and output arrays that are compatible with the
function prototype shown above.

3 Define a CUDA main function in the file xTest1_main.cu in your current working folder.

This main function includes the header files coder_gpu_array.h and coder_array.h that
contain the coder::gpu_array and coder::array class template definitions respectively. The
main function performs these actions:

• Declare myArray and myResult as two-dimensional coder::array dynamic arrays of
int32_T elements.

• Dynamically set the sizes of the two dimensions of myArray to 1 and 100 by using the
set_size method.
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• Access the size vector of myResult by using myResult.size.
#include<iostream>
#include<coder_array.h>
#include<xTest1.h>

int main(int argc, char *argv[])
{
    static_cast<void>(argc);
    static_cast<void>(argv);
    
    // Instantiate the input variable by using coder::array template
    coder::array<int32_T, 2> myArray;     
    
    // Allocate initial memory for the array
    myArray.set_size(1, 100);             

    // Access array with standard C++ indexing
    for (int i = 0; i < myArray.size(1); i++) {
        myArray[i] = i;                   
    }
    
    // Instantiate the result variable by using coder::array template
    coder::array<int32_T, 2> myResult;

    // Pass the input and result arrays to the generated function
    xTest1(myArray, 1000, myResult);

    for (int i = 0; i < myResult.size(1); i++) {
        if (i > 0) std::cout << " ";
        std::cout << myResult[i];
        if (((i+1) % 10) == 0) std::cout << std::endl;
    }
    std::cout << std::endl;

    return 0;
}

4 Generate code by running this script:
cfg = coder.gpuConfig('exe');
cfg.DynamicMemoryAllocationInterface = 'C++';
cfg.GenerateReport = true;
cfg.CustomSource = 'xTest1_main.cu';
cfg.CustomInclude = '.';
codegen -config cfg -args inputs xTest1_main.cu xTest1.m

5 The code generator produces an executable file xTest1 in your current working folder. Run the
executable using the following commands:

if ispc
  !xtest1.exe
else
  !./xTest1
end

 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

Limitations
• For generating CUDA code that uses coder::gpu_array, the GPU memory allocation mode must

be set to discrete.
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To change the memory allocation mode in the GPU Coder app, use the Malloc Mode drop-down
box under More Settings->GPU Coder. When using the command-line interface, use the
MallocMode build configuration property and set it to either 'discrete' or 'unified'.

• GPU Coder does not support coder::gpu_array in Simulink.

See Also
coder.typeof | coder.varsize

More About
• “Use C Arrays in the Generated Function Interfaces”
• “Representation of Arrays in Generated Code”
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Support for GPU Arrays
You can use GPU arrays as input and output arguments to an entry-point function when generating
CUDA MEX, source code, static libraries, dynamic libraries, and executables. GPU Coder
automatically takes care of CPU-GPU copies based on the input type and the usage of the variable in
your MATLAB design. The GPU array functionality is useful in minimizing CPU-GPU copies when you
are trying to:

• Integrate the generated code with an existing implementation that has its outputs on the GPU
memory.

• Pass MATLAB gpuArray inputs to the generated MEX function.

To mark an input to the entry-point function as a GPU type, use one of the following approaches:

• Use coder.typeof to represent the gpuArray type of an entry-point function input. For
example:

coder.typeof(rand(20),'Gpu',true);

• Use the gpuArray function. For example:

in = gpuArray(rand(1,10)); 
codegen -config cfg -args {in} test

Considerations
• GPU Coder supports all data type supported by gpuArray.
• For using variable dimension arrays, only the bounded types are supported.
• For 'lib', 'dll', and 'exe' targets, you must pass the correct pointers to the entry-point

function in the example main function. For example, if an input is marked as 'Gpu', a GPU pointer
should be passed when the entry-point is called from the main function.

• The MemoryMode (memory allocation mode) property of the code configuration object must be set
to 'discrete'. For example,

cfg.GpuConfig.MallocMode = 'discrete';

• During code generation, if one input to entry-point function is of the GPU array, then GPU Coder
attempts to make all the output variables GPU array types, provided they are supported by
gpuArray. For example. if the entry-point function returns a struct and because struct is not
supported by gpuArray, the generated code returns a CPU output. However, if a supported
matrix type is returned, then the generated code returns a GPU output.

Note Passing gpuArray inputs does not guarantee the outputs to also be gpuArray.

Limitations
• GPU Coder does not support the following types:

• char
• half
• Scalar GPU arrays
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• Structures
• Cell arrays
• Classes
• Enumerated types
• Fixed-point data types

• GPU Coder does not support the 'unified' memory mode for GPU arrays.

See Also
coder.gpu.kernel | coder.gpu.kernelfun | gpucoder.matrixMatrixKernel |
coder.gpu.constantMemory | gpucoder.stencilKernel

Related Examples
• “Kernels from Element-Wise Loops” on page 2-2
• “Kernels from Scatter-Gather Type Operations” on page 2-4
• “Kernels from Library Calls” on page 2-8
• “Design Patterns” on page 2-26
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What is Half Precision?
The IEEE® 754 half-precision floating-point format is a 16-bit word divided into a 1-bit sign indicator
s, a 5-bit biased exponent e, and a 10-bit fraction f.

Because numbers of type half are stored using 16 bits, they require less memory than numbers of
type single, which uses 32 bits, or double, which uses 64 bits. However, because they are stored
with fewer bits, numbers of type half are represented to less precision than numbers of type
single or double.

The range, bias, and precision for supported floating-point data types are given in the table below.

Data Type Low Limit High Limit Exponent Bias Precision
Half 2−14 ≈ 6.1·10−5 (2−2-10) ·215≈ 6.5·104 15 2−10 ≈ 10−3

Single 2−126 ≈ 10−38 2128 ≈ 3 · 1038 127 2−23 ≈ 10−7

Double 2−1022 ≈ 2 · 10−308 21024 ≈ 2 · 10308 1023 2−52 ≈ 10−16

For a video introduction to the half-precision data type, see What Is Half Precision? and Half-
Precision Math in Modeling and Code Generation.

Half Precision Applications
When an algorithm contains large or unknown dynamic ranges (for example integrators in feedback
loops) or when the algorithm uses operations that are difficult to design in fixed-point (for example
atan2), it can be advantageous to use floating-point representations. The half-precision data type
occupies only 16 bits of memory, but its floating-point representation enables it to handle wider
dynamic ranges than integer or fixed-point data types of the same size. This makes half precision
particularly suitable for some image processing and graphics applications. When half-precision is
used with deep neural networks, the time needed for training and inference can be reduced. By using
half precision as a storage time for lookup tables, the memory footprint of the lookup table can be
reduced.

MATLAB Examples

• “Fog Rectification” on page 2-80 — The fog rectification image processing algorithm uses
convolution, image color space conversion, and histogram-based contrast stretching to enhance
the input image. This example shows how to generate and execute CUDA MEX with half-precision
data types for these image processing operations.
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• “Edge Detection with Sobel Method in Half-Precision” on page 2-103 — The sobel edge detection
algorithm takes an input image and returns an output image that emphasizes high spatial
frequency regions that correspond to edges in the input image. This example shows how to
generate and execute CUDA MEX with the half-precision data type used for the input image and
Sobel operator kernel values.

• “Generate Code for Sobel Edge Detection That Uses Half-Precision Data Type” — This example
shows how to generate a standalone C++ library from a MATLAB function that performs Sobel
edge detection of images by using half-precision floating point numbers.

Simulink Examples

• “Half-Precision Field-Oriented Control Algorithm” (Fixed-Point Designer) — This example
implements a Field-Oriented Control (FOC) algorithm using both single precision and half
precision.

• “Image Quantization with Half-Precision Data Types” (Fixed-Point Designer) — This example
shows the effects of quantization on images. While the fixed-point data type does not always
produce an acceptable results, the half-precision data type, which uses the same number of bits as
the fixed-point data type, produces a result comparable to the single-precision result.
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• “Digit Classification with Half-Precision Data Types” (Fixed-Point Designer) — This example
compares the results of a trained neural network classification model in double precision and half
precision.

• “Convert Single Precision Lookup Table to Half Precision” (Fixed-Point Designer) — This example
demonstrates how to convert a single-precision lookup table to use half precision. Half precision is
the storage type; the lookup table computations are performed using single precision. After
converting to half precision, the memory size of the Lookup Table blocks are reduced by half while
maintaining the desired system performance.

Benefits of Using Half Precision in Embedded Applications
The half precision data type uses less memory than other floating-point types like single and double.
Though it occupies only 16 bits of memory, its floating-point representations enables it to handle
wider dynamic ranges than integer or fixed-point data types of the same size.

FPGA

The half precision data type uses significantly less area and has low latency compared to the single
precision data type when used on hardware. Half precision is particularly advantageous for low
dynamic range applications.

The following plot shows the advantage of using half precision for an implementation of a field-
oriented control algorithm in Xilinx® Virtex® 7 hardware.
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GPU

In GPUs that support the half-precision data type, arithmetic operations are faster as compared to
single or double precision.

In applications like deep learning, which require a large number of computations, using half precision
can provide significant performance benefits without significant loss of precision. With GPU Coder,
you can generate optimized code for prediction of a variety of trained deep learning networks from
the Deep Learning Toolbox™. You can configure the code generator to take advantage of the NVIDIA
TensorRT high performance inference library for NVIDIA GPUs. TensorRT provides improved latency,
throughput, and memory efficiency by combining network layers and optimizing kernel selection. You
can also configure the code generator to take advantage TensorRT's precision modes (FP32, FP16, or
INT8) to further improve performance and reduce memory requirements.

CPU

In CPUs that support the half-precision data type, arithmetic operations are faster as compared to
single or double precision. For ARM® targets that natively support half-precision data types, you can
generate native half C code from MATLAB or Simulink. See “Code Generation with Half Precision”
(Fixed-Point Designer).

Half Precision in MATLAB
Many functions in MATLAB support the half-precision data type. For a full list of supported functions,
see half.
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Half Precision in Simulink
Signals and block outputs in Simulink can specify a half-precision data type. The half-precision data
type is supported for simulation and code generation for parameters and a subset of blocks. To view
the blocks that support half precision, at the command line, type:

showblockdatatypetable

Blocks that support half precision display an X in the column labeled Half. For detailed information
about half precision support in Simulink, see “The Half-Precision Data Type in Simulink” (Fixed-Point
Designer).

Code Generation with Half Precision
The half precision data type is supported for C/C++ code generation, CUDA code generation using
GPU Coder, and HDL code generation using HDL Coder™. For GPU targets, the half-precision data
type uses the native half data type available in NVIDIA GPU for maximum performance.

For detailed code generation support for half precision in MATLAB and Simulink, see “Half Precision
Code Generation Support” (Fixed-Point Designer) and “The Half-Precision Data Type in Simulink”
(Fixed-Point Designer).

For embedded hardware targets that natively support special types for half precision, such as
_Float16 and _fp16 data types for ARM compilers, you can generate native half precision C code
using Embedded Coder® or MATLAB Coder. For more information, see “Generate Native Half-
Precision C Code from Simulink Models” (Fixed-Point Designer) and “Generate Native Half-Precision
C Code Using MATLAB Coder” (Fixed-Point Designer).

See Also
half | “The Half-Precision Data Type in Simulink” (Fixed-Point Designer) | "Half Precision" 16-bit
Floating Point Arithmetic | “Floating-Point Numbers” (Fixed-Point Designer)

Related Examples
• “Fog Rectification” on page 2-80
• “Edge Detection with Sobel Method in Half-Precision” on page 2-103
• “Generate Code for Sobel Edge Detection That Uses Half-Precision Data Type”
• “Half-Precision Field-Oriented Control Algorithm” (Fixed-Point Designer)
• “Image Quantization with Half-Precision Data Types” (Fixed-Point Designer)
• “Digit Classification with Half-Precision Data Types” (Fixed-Point Designer)
• “Convert Single Precision Lookup Table to Half Precision” (Fixed-Point Designer)
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Half Precision Code Generation Support
To assign a half-precision data type to a number or variable, use the half constructor. A half-
precision data type occupies 16 bits of memory, but its floating-point representation enables it to
handle wider dynamic ranges than integer or fixed-point data types of the same size. For more
information, see “Floating-Point Numbers” (Fixed-Point Designer).

A subset of MATLAB functions are supported for use with half-precision inputs. Additionally, some
functions support code generation with half-precision data types. C and C++ code generation
requires MATLAB Coder. CUDA code generation for NVIDIA GPUs requires GPU Coder. Supported
functions appear in alphabetical order in the following table. MATLAB System object™ supports half-
precision data type and MATLAB System (Simulink) block supports half-precision data type with real
values. For general information regarding code generation with half precision, see half.

Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

abs ✔ ✔ ✔

acos ✔ ✔ ✔

acosh ✔ ✔ ✔

activations ✔ ✔

Half inputs are cast to
single precision and
computations are
performed in single
precision.

✔

Half inputs are cast to
single precision and
computations are
performed in single
precision. To perform
computations in half, set
the library target to
'tensorrt' and set
the data type to 'FP16'
in
coder.DeepLearning
Config.

all ✔ ✔ ✔

allfinite ✔ ✔ ✔

and, & ✔ ✔ ✔

Short-Circuit AND ✔ ✔ ✔

any ✔ ✔ ✔

anynan ✔ ✔ ✔

area ✔   
asin ✔ ✔ ✔

asinh ✔ ✔ ✔

atan ✔ ✔ ✔

atan2 ✔ ✔ ✔

atanh ✔ ✔ ✔

2 Kernel Creation from MATLAB Code

2-44



Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

bar ✔   
barh ✔   
cast ✔

Supported syntax:

cast(＿,'half')

cast(＿,'like',p)

✔

Supported syntax:

cast(＿,'half')

cast(＿,'like',p)

✔

Supported syntax:

cast(＿,'half')

cast(＿,'like',p)
cat ✔ ✔

• Dimension argument
must be a constant.

• Dimension argument
cannot be half
precision.

✔

• Dimension argument
must be a constant.

• Dimension argument
cannot be half
precision.

ceil ✔ ✔ ✔

cell ✔ ✔ ✔

chol ✔   
circshift ✔ ✔ ✔

classify ✔ ✔

Half inputs are cast to
single precision and
computations are
performed in single
precision.

✔

Half inputs are cast to
single precision and
computations are
performed in single
precision. To perform
computations in half, set
the library target to
'tensorrt' and set
the data type to 'FP16'
in
coder.DeepLearning
Config.

coder.ceval  ✔ ✔

colon, : ✔ ✔ ✔

complex ✔ ✔  
conj ✔ ✔ ✔

conv ✔ ✔ ✔

conv2 ✔ ✔ ✔

cos ✔ ✔ ✔

cosh ✔ ✔ ✔

cospi ✔ ✔ ✔

 Half Precision Code Generation Support

2-45



Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

ctranspose ✔ ✔ ✔

cumsum ✔   
dot ✔   
double ✔ ✔ ✔

empty ✔   
eps ✔

Supported syntax:

eps('half')

eps(half(1))

eps('like',half(1)
)

✔

eps(half(1))

✔

eps(half(1))

eq, == ✔ ✔ ✔

exp ✔ ✔ ✔

expm1 ✔ ✔ ✔

eye ✔

Supported syntax:

eye(＿,'half')

eye(＿,'like',p)

✔

Supported syntax:

eye(＿,'half')

eye(＿,'like',p)
where p is half
precision. Other input
arguments cannot be
half precision.

✔

Supported syntax:

eye(＿,'half')

eye(＿,'like',p)
where p is half
precision. Other input
arguments cannot be
half precision.

fft ✔ ✔  
fft2 ✔ ✔  
fftn ✔ ✔  
fftshift ✔ ✔ ✔

fix ✔ ✔ ✔

flintmax ✔

Supported syntax:

flintmax('half')

flintmax('like',ha
lf(1))
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Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

flip ✔ ✔

Dimension argument
cannot be half
precision.

✔

Dimension argument
cannot be half
precision.

fliplr ✔ ✔ ✔

flipud ✔ ✔ ✔

floor ✔ ✔ ✔

fma ✔

Complex half-precision
inputs are not
supported.

✔

Complex half-precision
inputs are not
supported.

✔

Complex half-precision
inputs are not
supported.

fplot ✔   
ge, >= ✔ ✔ ✔

gt, > ✔ ✔ ✔

half ✔ ✔ ✔

horzcat ✔ ✔ ✔

hypot ✔ ✔ ✔

ifft ✔ ✔  
ifft2 ✔ ✔  
ifftn ✔ ✔  
ifftshift ✔ ✔ ✔

imag ✔ ✔  
Inf ✔

Supported syntax:

Inf(＿,'half')

Inf(＿,'like',p)

✔

Supported syntax:

Inf(＿,'half')

Inf(＿,'like',p)

✔

Supported syntax:

Inf(＿,'half')

Inf(＿,'like',p)
int16 ✔ ✔ ✔

int32 ✔ ✔ ✔

int64 ✔ ✔ ✔

int8 ✔ ✔ ✔

isa ✔ ✔ ✔

iscolumn ✔ ✔ ✔

isempty ✔ ✔ ✔

isequal ✔ ✔ ✔

isequaln ✔ ✔ ✔
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Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

isfinite ✔ ✔ ✔

isfloat ✔ ✔ ✔

isinf ✔ ✔ ✔

isinteger ✔ ✔ ✔

islogical ✔ ✔ ✔

ismatrix ✔ ✔ ✔

isnan ✔ ✔ ✔

isnumeric ✔ ✔ ✔

isobject ✔

Returns true with half-
precision input.

✔

Returns false with half-
precision input.

✔

Returns false with half-
precision input.

isreal ✔ ✔ ✔

isrow ✔ ✔ ✔

isscalar ✔ ✔ ✔

issorted ✔   
isvector ✔ ✔ ✔

ldivide ✔ ✔ ✔

le, <= ✔ ✔ ✔

length ✔ ✔ ✔

line ✔   
log ✔ ✔ ✔

log10 ✔ ✔ ✔

log1p ✔ ✔ ✔

log2 ✔ ✔

Two output syntax is not
supported.

✔

Two output syntax is not
supported.

logical ✔ ✔ ✔

lt, < ✔ ✔ ✔

lu ✔   
max ✔ ✔ ✔

mean ✔ ✔ ✔

min ✔ ✔ ✔

minus, - ✔ ✔ ✔

mldivide, \ ✔

Left-hand side must be
scalar
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Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

mod ✔ ✔ ✔

mrdivide, / ✔

Right-hand side must be
scalar

✔

Right-hand side must be
scalar

✔

Right-hand side must be
scalar

mtimes, * ✔ ✔ ✔

For GPU Code
generation, you can
perform half-precision
matrix multiplication
with real inputs.

NaN ✔

Supported syntax:

NaN(＿,'half')

NaN(＿,'like',p)

✔

Supported syntax:

NaN(＿,'half')

NaN(＿,'like',p)

✔

Supported syntax:

NaN(＿,'half')

NaN(＿,'like',p)
ndims ✔ ✔ ✔

ne, ~= ✔ ✔ ✔

not ✔ ✔ ✔

numel ✔ ✔ ✔

ones ✔

Supported syntax:

ones(＿,'half')

ones(＿,'like',p)

✔

Supported syntax:

ones(＿,'half')

ones(＿,'like',p)

✔

Supported syntax:

ones(＿,'half')

ones(＿,'like',p)
or, || ✔ ✔ ✔

Short-Circuit OR ✔ ✔ ✔

permute ✔ ✔ ✔

plot ✔   
plot3 ✔   
plotmatrix ✔   
plus, + ✔ ✔ ✔

pow10 ✔ ✔ ✔

pow2 ✔ ✔ ✔

power, .^ ✔ ✔ ✔
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Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

predict ✔ ✔

Half inputs are cast to
single precision and
computations are
performed in single
precision.

✔

Half inputs are cast to
single precision and
computations are
performed in single
precision. To perform
computations in half, set
the library target to
'tensorrt' and set
the data type to 'FP16'
in
coder.DeepLearning
Config.

predictAndUpdateSt
ate

✔ ✔

Half inputs are cast to
single precision and
computations are
performed in single
precision.

✔

Half inputs are cast to
single precision and
computations are
performed in single
precision. To perform
computations in half, set
the library target to
'tensorrt' and set
the data type to 'FP16'
in
coder.DeepLearning
Config.
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Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

prod ✔

Half inputs are cast to
single precision and
computations are
performed in single
precision. As a result,
saturation behavior
differs between single
and half inputs:

maxhalf = half.realmax;
isequal(prod([maxhalf 2 0.5]), maxhalf)

ans =

  logical

   1

maxsingle = realmax('single');
isequal(prod([maxsingle 2 0.5]), maxsingle)

ans =

  logical

   0

✔ ✔

rdivide ✔ ✔ ✔

real ✔ ✔ ✔

realmax ✔

Supported syntax:

realmax('half')

realmax('like',hal
f(1))

  

realmin ✔

Supported syntax:

realmin('half')

realmin('like',hal
f(1))

  

rem ✔ ✔ ✔

repelem ✔ ✔ ✔
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Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

repmat ✔ ✔

Dimension argument
cannot be half
precision.

✔

Dimension argument
cannot be half
precision.

reshape ✔ ✔

Dimension argument
cannot be half
precision.

✔

Dimension argument
cannot be half
precision.

rgbplot ✔   
round ✔

Only one input
supported

✔

Only one input
supported

✔

Only one input
supported

rsqrt ✔

Complex half-precision
inputs are not
supported

  

scatter ✔   
scatter3 ✔   
sign ✔ ✔ ✔

sin ✔ ✔ ✔

single ✔ ✔ ✔

sinh ✔ ✔ ✔

sinpi ✔ ✔ ✔

size ✔ ✔ ✔

sort ✔   
sqrt ✔ ✔ ✔

squeeze ✔ ✔ ✔

storedInteger ✔   
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Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

sum ✔

Half inputs are cast to
single precision and
computations are
performed in single
precision. As a result,
saturation behavior
differs between single
and half inputs:

maxhalfint = half.flintmax;
isequal(sum([maxhalfint, 1, -1]), maxhalfint)

ans =

  logical

   1

maxsingleint = flintmax('single');
isequal(sum([maxsingleint, 1, -1]), maxsingleint)

ans =

  logical

   0

✔ ✔

tan ✔ ✔ ✔

tanh ✔ ✔ ✔

times, .* ✔ ✔ ✔

transpose ✔ ✔ ✔

typecast ✔   
uint16 ✔ ✔ ✔

uint32 ✔ ✔ ✔

uint64 ✔ ✔ ✔

uint8 ✔ ✔ ✔

uminus ✔ ✔ ✔

uplus ✔ ✔ ✔

vertcat ✔ ✔ ✔

xlim ✔   
ylim ✔   
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Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

zeros ✔

Supported syntax:

zeros(＿,'half')

zeros(＿,'like',p)

✔

Supported syntax:

zeros(＿,'half')

zeros(＿,'like',p)

✔

Supported syntax:

zeros(＿,'half')

zeros(＿,'like',p)
zlim ✔   

See Also
half

More About
• “Floating-Point Numbers” (Fixed-Point Designer)
• “What is Half Precision?” (Fixed-Point Designer)
• Edge Detection with Sobel Method in Half-Precision on page 2-103
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Simulate Diffraction Patterns Using CUDA FFT Libraries

This example shows how to use GPU Coder™ to leverage the CUDA® Fast Fourier Transform library
(cuFFT) to compute two-dimensional FFT on a NVIDIA® GPU. The two-dimensional Fourier transform
is used in optics to calculate far-field diffraction patterns. When a monochromatic light source passes
through a small aperture, such as in Young's double-slit experiment, you can observe these diffraction
patterns. This example also shows you how to use GPU pointers as inputs to an entry-point function
when generating CUDA MEX, source code, static libraries, dynamic libraries, and executables. By
using this functionality, the performance of the generated code is improved by minimizing the number
of cudaMemcpy calls in the generated code.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA enabled NVIDIA GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('host');
envCfg.BasicCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Define the Coordinate System

Before simulating the light that has passed through an aperture, you must define your coordinate
system. To get the correct numeric behavior when you call fft2, you must carefully arrange  and 
so that the zero value is in the correct place. N2 is half the size in each dimension.

N2 = 1024;
[gx, gy] = meshgrid(-1:1/N2:(N2-1)/N2);

Simulate the Diffraction Pattern for a Rectangular Aperture

Simulate the effect of passing a parallel beam of monochromatic light through a small rectangular
aperture. The two-dimensional Fourier transform describes the light field at a large distance from the
aperture. Form aperture as a logical mask based on the coordinate system. The light source is a
double-precision version of the aperture. Find the far-field light signal by using the fft2 function.
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aperture       = (abs(gx) < 4/N2) .* (abs(gy) < 2/N2);
lightsource    = double(aperture);
farfieldsignal = fft2(lightsource);

Display the Light Intensity for a Rectangular Aperture

The visualize.m function displays the light intensity for a rectangular aperture. Calculate the far-
field light intensity from the magnitude squared of the light field. To aid visualization, use the
fftshift function.

type visualize

function visualize(farfieldsignal, titleStr)

farfieldintensity = real( farfieldsignal .* conj( farfieldsignal ) );
imagesc( fftshift( farfieldintensity ) );
axis( 'equal' ); axis( 'off' );
title(titleStr);

end

str = sprintf('Rectangular Aperture Far-Field Diffraction Pattern in MATLAB');
visualize(farfieldsignal,str);
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Generate CUDA MEX for the Function

You do not have to create an entry-point function. You can directly generate code for the MATLAB®
fft2 function. To generate CUDA MEX for the MATLAB fft2 function, in the configuration object,
set the EnablecuFFT property and use the codegen function. GPU Coder replaces fft, ifft, fft2,
ifft2, fftn, and ifftn function calls in your MATLAB code to the appropriate cuFFT library calls.
For two-dimensional transforms and higher, GPU Coder creates multiple 1-D batched transforms.
These batched transforms have higher performance than single transforms. After generating the MEX
function, you can verify that it has the same functionality as the original MATLAB entry-point
function. Run the generated fft2_mex and plot the results.

cfg = coder.gpuConfig('mex');
cfg.GpuConfig.EnableCUFFT = 1;
codegen -config cfg -args {lightsource} fft2

farfieldsignalGPU = fft2_mex(lightsource);
str = sprintf('Rectangular Aperture Far-Field Diffraction Pattern on GPU');
visualize(farfieldsignalGPU,str);

Code generation successful.

Simulate The Young's Double-Slit Experiment

Young's double-slit experiment shows light interference when an aperture comprises two parallel
slits. A series of bright points is visible where constructive interference takes place. In this case, form
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the aperture representing two slits. Restrict the aperture in the  direction to ensure that the
resulting pattern is not entirely concentrated along the horizontal axis.

slits          = (abs(gx) <= 10/N2) .* (abs(gx) >= 8/N2);
aperture       = slits .* (abs(gy) < 20/N2);
lightsource    = double(aperture);

Display the Light Intensity for Young's Double-Slit

Because the size, type and complexity of the inputs remains the same, reuse the fft2_mex generated
MEX-function and display the intensity as before.

farfieldsignalGPU = fft2_mex(lightsource);
str = sprintf('Double Slit Far-Field Diffraction Pattern on GPU');
visualize(farfieldsignalGPU,str);

Generate CUDA MEX Using GPU Pointer as Input

In the CUDA MEX generated above, the input provided to MEX is copied from CPU to GPU memory,
the computation is performed on the GPU and the result is copied back to the CPU. Alternatively,
CUDA code can be generated such that it accepts GPU pointers directly. For MEX targets, GPU
pointers can be passed from MATLAB® to CUDA MEX using gpuArray. For other targets, GPU
memory must be allocated and inputs must be copied from CPU to GPU inside the handwritten main
function, before they are passed to the entry-point function.

lightsource_gpu = gpuArray(lightsource);
cfg = coder.gpuConfig('mex');
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cfg.GpuConfig.EnableCUFFT = 1;
codegen -config cfg -args {lightsource_gpu} fft2 -o fft2_gpu_mex

Code generation successful.

Only numeric and logical input matrix types can be passed as GPU pointers to the entry-point
function. Other data types that are not supported can be passed as CPU inputs. During code
generation, if at least one of the inputs provided to the entry-point function is a GPU pointer, the
outputs returned from the function are also GPU pointers. However, if the data type of the output is
not supported as a GPU pointer, such as a struct or a cell-array, the output will be returned as a CPU
pointer. For more information on passing GPU pointers to entry-point function, see “Support for GPU
Arrays” on page 2-37.

Notice the difference in the generated CUDA code when using lightsource_gpu GPU input. It
avoids copying the input from CPU to GPU memory and avoids copying the result back from GPU to
CPU memory. This results in fewer cudaMemcpys and improves the performance of the generated
CUDA MEX.

Verify Results of CUDA MEX Using GPU Pointer as Input

To verify that the generated CUDA MEX using gpuArray has the same functionality, run the
generated fft2_gpu_mex, gather the results on the host and plot the results.

farfieldsignal_gpu = fft2_gpu_mex(lightsource_gpu);
farfieldsignal_cpu = gather(farfieldsignal_gpu);
str = sprintf('Double Slit Far-Field Diffraction Pattern on GPU using gpuArray');
visualize(farfieldsignal_cpu,str);
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See Also
Functions
codegen | coder.gpu.kernel | coder.gpu.kernelfun | gpucoder.matrixMatrixKernel |
coder.gpu.constantMemory | gpucoder.stencilKernel | coder.checkGpuInstall

Objects
coder.gpuConfig | coder.CodeConfig | coder.EmbeddedCodeConfig | coder.gpuEnvConfig

Related Examples
• “Kernels from Library Calls” on page 2-8
• “Design Patterns” on page 2-26
• “Kernels from Scatter-Gather Type Operations” on page 2-4
• “Call Custom CUDA Device Function from the Generated Code” on page 2-22
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Benchmark Solving a Linear System by Using GPU Coder

This example shows how to benchmark solving a linear system by generating CUDA® code. Use
matrix left division, also known as mldivide or the backslash operator (\), to solve the system of
linear equations A*x = b for x (that is, compute x = A\b).

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('host');
envCfg.BasicCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Determine the Maximum Data Size

Choose the appropriate matrix size for the computations by specifying the amount of system memory
in GB available to the CPU and the GPU. The default value is based only on the amount of memory
available on the GPU. You can specify a value that is appropriate for your system.

g = gpuDevice; 
maxMemory = 0.1*g.AvailableMemory/1024^3;

Note:

This example uses cuSOLVER libararies that have significant GPU memory requirements for creating
workspaces. If you run into CUDA out-of-memory errors, reduce the maxMemory or the matrix step
sizes in sizeSingle and sizeDouble.

The Benchmarking Function

This example benchmarks matrix left division (\) including the cost of transferring data between the
CPU and GPU, to get a clear view of the total application time when using GPU Coder™. The
application time profiling must not include the time to create sample input data. The genData.m
function separates generation of test data from the entry-point function that solves the linear system.
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type getData.m

function [A, b] = getData(n, clz)

%   Copyright 2017-2022 The MathWorks, Inc.

    fprintf('Creating a matrix of size %d-by-%d.\n', n, n);
    A = rand(n, n, clz) + 100*eye(n, n, clz);
    b = rand(n, 1, clz);
end

The Backslash Entry-Point Function

The backslash.m entry-point function encapsulates the (\) operation for which you want to generate
code.

type backslash.m

function [x] = backslash(A,b)
%#codegen

%   Copyright 2017-2022 The MathWorks, Inc.

    coder.gpu.kernelfun();
    x = A\b;
end

Generate the GPU Code

Create a function to generate the GPU MEX function based on the particular input data size.

type genGpuCode.m

function [] = genGpuCode(A, b)

%   Copyright 2017-2022 The MathWorks, Inc.

    cfg = coder.gpuConfig('mex');
    evalc('codegen -config cfg -args {A,b} backslash');
end

Choose a Problem Size

The performance of the parallel algorithms that solve a linear system depends greatly on the matrix
size. This example compares the performance of the algorithm for different matrix sizes (multiples of
1024).

sizeLimit = inf;
if ispc
    sizeLimit = double(intmax('int32'));
end
maxSizeSingle = min(floor(sqrt(maxMemory*1024^3/4)),floor(sqrt(sizeLimit/4)));
maxSizeDouble = min(floor(sqrt(maxMemory*1024^3/8)),floor(sqrt(sizeLimit/8)));
step = 1024;
if maxSizeDouble/step >= 10
    step = step*floor(maxSizeDouble/(5*step));
end
sizeSingle = 1024:step:maxSizeSingle;
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sizeDouble = 1024:step:maxSizeDouble;
numReps = 5;

Compare Performance: Speedup

Use the total elapsed time as a measure of performance because that enables you to compare the
performance of the algorithm for different matrix sizes. Given a matrix size, the benchmarking
function creates the matrix A and the right-side b once, and then solves A\b a few times to get an
accurate measure of the time it takes.

type benchFcnMat.m

function time = benchFcnMat(A, b, reps)

%   Copyright 2017-2022 The MathWorks, Inc.

    time = inf;
    % Solve the linear system a few times and take the best run
    for itr = 1:reps
        tic;
        matX = backslash(A, b);
        tcurr = toc;
        time = min(tcurr, time);
    end
end

Create a different function for GPU code execution that invokes the generated GPU MEX function.

type benchFcnGpu.m

function time = benchFcnGpu(A, b, reps)

%   Copyright 2017-2022 The MathWorks, Inc.

    time = inf;
    gpuX = backslash_mex(A, b);
    for itr = 1:reps
        tic;
        gpuX = backslash_mex(A, b);
        tcurr = toc;
        time = min(tcurr, time);
    end
end

Execute the Benchmarks

When you execute the benchmarks, the computations can take a long time to complete. Print some
intermediate status information as you complete the benchmarking for each matrix size. Encapsulate
the loop over all the matrix sizes in a function to benchmark single- and double-precision
computations.

Actual execution times can vary across different hardware configurations. This benchmarking was
done by using MATLAB R2022a on a machine with a 6 core, 3.5GHz Intel® Xeon® CPU and an
NVIDIA TITAN Xp GPU.

type executeBenchmarks.m

function [timeCPU, timeGPU] = executeBenchmarks(clz, sizes, reps)
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%   Copyright 2017-2022 The MathWorks, Inc.

    fprintf(['Starting benchmarks with %d different %s-precision ' ...
         'matrices of sizes\nranging from %d-by-%d to %d-by-%d.\n'], ...
            length(sizes), clz, sizes(1), sizes(1), sizes(end), ...
            sizes(end));
    timeGPU = zeros(size(sizes));
    timeCPU = zeros(size(sizes));   
    for i = 1:length(sizes)
        n = sizes(i);
        fprintf('Size : %d\n', n);
        [A, b] = getData(n, clz);
        genGpuCode(A, b);
        timeCPU(i) = benchFcnMat(A, b, reps);
        fprintf('Time on CPU: %f sec\n', timeCPU(i));
        timeGPU(i) = benchFcnGpu(A, b, reps);
        fprintf('Time on GPU: %f sec\n', timeGPU(i));
        fprintf('\n');
    end
end

Execute the benchmarks in single and double precision.

[cpu, gpu] = executeBenchmarks('single', sizeSingle, numReps);

Starting benchmarks with 9 different single-precision matrices of sizes
ranging from 1024-by-1024 to 17408-by-17408.
Size : 1024
Creating a matrix of size 1024-by-1024.
Time on CPU: 0.012281 sec
Time on GPU: 0.008329 sec

Size : 3072
Creating a matrix of size 3072-by-3072.
Time on CPU: 0.115839 sec
Time on GPU: 0.035071 sec

Size : 5120
Creating a matrix of size 5120-by-5120.
Time on CPU: 0.380651 sec
Time on GPU: 0.074228 sec

Size : 7168
Creating a matrix of size 7168-by-7168.
Time on CPU: 0.867239 sec
Time on GPU: 0.127977 sec

Size : 9216
Creating a matrix of size 9216-by-9216.
Time on CPU: 1.677065 sec
Time on GPU: 0.205344 sec

Size : 11264
Creating a matrix of size 11264-by-11264.
Time on CPU: 2.911081 sec
Time on GPU: 0.306867 sec

Size : 13312
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Creating a matrix of size 13312-by-13312.
Time on CPU: 4.684644 sec
Time on GPU: 0.440095 sec

Size : 15360
Creating a matrix of size 15360-by-15360.
Time on CPU: 6.950956 sec
Time on GPU: 0.608897 sec

Size : 17408
Creating a matrix of size 17408-by-17408.
Time on CPU: 9.833478 sec
Time on GPU: 0.802604 sec

results.sizeSingle = sizeSingle;
results.timeSingleCPU = cpu;
results.timeSingleGPU = gpu;
[cpu, gpu] = executeBenchmarks('double', sizeDouble, numReps);

Starting benchmarks with 6 different double-precision matrices of sizes
ranging from 1024-by-1024 to 11264-by-11264.
Size : 1024
Creating a matrix of size 1024-by-1024.
Time on CPU: 0.021463 sec
Time on GPU: 0.010796 sec

Size : 3072
Creating a matrix of size 3072-by-3072.
Time on CPU: 0.213805 sec
Time on GPU: 0.093114 sec

Size : 5120
Creating a matrix of size 5120-by-5120.
Time on CPU: 0.689023 sec
Time on GPU: 0.323026 sec

Size : 7168
Creating a matrix of size 7168-by-7168.
Time on CPU: 1.687437 sec
Time on GPU: 0.775834 sec

Size : 9216
Creating a matrix of size 9216-by-9216.
Time on CPU: 3.521580 sec
Time on GPU: 1.539601 sec

Size : 11264
Creating a matrix of size 11264-by-11264.
Time on CPU: 6.075310 sec
Time on GPU: 2.694465 sec

results.sizeDouble = sizeDouble;
results.timeDoubleCPU = cpu;
results.timeDoubleGPU = gpu;

Plot the Performance

Plot the results and compare the performance on the CPU and the GPU for single and double
precision.
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First, look at the performance of the backslash operator in single precision.

fig = figure;
ax = axes('parent', fig);
plot(ax, results.sizeSingle, results.timeSingleGPU, '-x', ...
     results.sizeSingle, results.timeSingleCPU, '-o')
grid on;
legend('GPU', 'CPU', 'Location', 'NorthWest');
title(ax, 'Single-Precision Performance')
ylabel(ax, 'Time (s)');
xlabel(ax, 'Matrix Size');

drawnow;

Now, look at the performance of the backslash operator in double precision.

fig = figure;
ax = axes('parent', fig);
plot(ax, results.sizeDouble, results.timeDoubleGPU, '-x', ...
     results.sizeDouble, results.timeDoubleCPU, '-o')
legend('GPU', 'CPU', 'Location', 'NorthWest');
grid on;
title(ax, 'Double-Precision Performance')
ylabel(ax, 'Time (s)');
xlabel(ax, 'Matrix Size');
drawnow;
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Finally, look at the speedup of the backslash operator when comparing the GPU to the CPU.

speedupDouble = results.timeDoubleCPU./results.timeDoubleGPU;
speedupSingle = results.timeSingleCPU./results.timeSingleGPU;
fig = figure;
ax = axes('parent', fig);
plot(ax, results.sizeSingle, speedupSingle, '-v', ...
     results.sizeDouble, speedupDouble, '-*')
grid on;
legend('Single-precision', 'Double-precision', 'Location', 'SouthEast');
title(ax, 'Speedup of Computations on GPU Compared to CPU');
ylabel(ax, 'Speedup');
xlabel(ax, 'Matrix Size');
drawnow;
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See Also
Functions
codegen | coder.gpu.kernel | coder.gpu.kernelfun | gpucoder.matrixMatrixKernel |
coder.gpu.constantMemory | gpucoder.stencilKernel | coder.checkGpuInstall

Objects
coder.gpuConfig | coder.CodeConfig | coder.EmbeddedCodeConfig | coder.gpuEnvConfig

Related Examples
• “Kernels from Library Calls” on page 2-8
• “Design Patterns” on page 2-26
• “Kernels from Scatter-Gather Type Operations” on page 2-4
• “Call Custom CUDA Device Function from the Generated Code” on page 2-22
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QR Decomposition on NVIDIA GPU Using cuSOLVER Libraries

This example shows how to create a standalone CUDA® executable that leverages the CUDA Solver
library (cuSOLVER). The example uses a curve fitting application that mimics automatic lane tracking
on a road to illustrate:

• Fitting an arbitrary-order polynomial to noisy data by using matrix QR factorization.
• Using the coder.LAPACKCallback class to provide the LAPACK library information for the code

generator when generating standalone executables.

Prerequisites

• CUDA enabled NVIDIA® GPU.
• NVIDIA CUDA toolkit and driver.
• LAPACK library that is optimized for your execution environment. For more information, see

LAPACK vendors implementations. This example uses the mwlapack libraries that MATLAB®
provides in matlabroot/extern/lib.

• Environment variables for the compilers and libraries. For information on the supported versions
of the compilers and libraries, see “Third-Party Hardware”. For setting up the environment
variables, see “Setting Up the Prerequisite Products”.

Verify GPU Environment

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('host');
envCfg.BasicCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Solve a Linear System by Using Matrix Factorization

In curve fitting applications, the objective is to estimate the coefficients of a low-order polynomial.
The polynomial is then used as a model for observed noisy data, which in this example represents the
lane boundary of the road ahead of a vehicle. For example, when using a quadratic polynomial, there
are three coefficients (a, b, and c) to estimate:

ax2 + bx + c

The polynomial that fits best is defined as the one that minimizes the sum of the squared errors
between itself and the noisy data. To solve this least-squares problem, you get and solve an
overdetermined linear system. An explicit matrix inverse is not required to solve the system.

In this example, the unknowns are the coefficients of each term in the polynomial. Because the
polynomial you use as a model always starts from the current position on the road, the constant term
in the polynomial is assumed to be zero. Estimate the coefficients for the linear and higher-order
terms. Set up a matrix equation Ax=y such that:

• y contains the sensor outputs.
• x contains the polynomial coefficients that we need to obtain.
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• A is a constant matrix related to the order of the polynomial and the locations of the sensors.

Solve the equation using the QR factorization of A:

Ax = QRx = y

and

x = pinv(A) * y = R−1QT * y

where pinv() represents pseudo-inverse. Given the matrix A, you can use the following code to
implement a solution of this matrix equation. Factoring A allows for an easier solution of the system.

[Q,R,P] = qr(A);
z = Q' * y;
x = R \ z;
yhat = A * x;

Use the linsolveQR function to solve the equation using the QR factorization of A.

type linsolveQR.m

function [yhat,x] = linsolveQR(A,y)
%#codegen

%   Copyright 2019 The MathWorks, Inc.

[Q,R,P] = qr(A);
z = Q' * y;
x = R \ z;
yhat = A * x;

end

Signal Model for the Road

To test the algorithm, a continuously curving road model is used, that is, a sinusoid that is
contaminated with additive noise. By varying the frequency of the sinusoid in the model, you can
stress the algorithm by different amounts. This code simulates noisy sensor outputs using our road
model:

% Duration - Distance that we look ahead
% N - Total number of sensors providing estimates of road boundary
% Ts - Sample interval
% FracPeriod - Fraction of period of sinusoid to match
% y - Contains the simulated sensor outputs
Duration = 2;      
N = 25;            
Ts = Duration / N; 
FracPeriod = 0.5;  
y = sin(2*pi* (0:N-1)' * (FracPeriod/N)) + sqrt(0.3) * randn(N,1);  

Use this code to form the Vandermonde matrix A:

Npoly = 3;                  % Order of polynomial to use in fitting
v = (0:Ts:((N-1)*Ts))';
A = zeros(length(v), Npoly);
for i = Npoly : -1 : 1
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    A(:,i) = v.^i;
end

The Vandermonde matrix A and sensor outputs matrix y are passed as input parameters to the
linsolveQR entry-point function. These inputs are written to comma-separated files and are read
from the handwritten main qrmain.cu.

 writematrix(reshape(A, 1, 75), 'inputA.csv');
 writematrix(reshape(y, 1, 25), 'inputY.csv');

Custom Callback Class for Standalone Code Generation

The qr function is only partially supported in the cuSOLVER library. In such cases, GPU Coder™ uses
the LAPACK library for certain linear algebra function calls. LAPACK is an external software library for
numeric linear algebra. For MEX targets, the code generator uses the LAPACK library included in
MATLAB.

For standalone targets, you must define a custom coder.LAPACKCallback class that specifies the
LAPACK libraries along with the header files to use for linear algebra calls in the generated code. In
this example, the lapackCallback callback class specifies the paths to these libraries in
updateBuildInfo method. You must modify this file with the library names and paths for the
custom LAPACK installation on your computer.

type lapackCallback.m

classdef lapackCallback < coder.LAPACKCallback
%

%   Copyright 2019 The MathWorks, Inc.

    methods (Static)
        function hn = getHeaderFilename()
            hn = 'lapacke.h';
        end

        function updateBuildInfo(buildInfo, buildctx)
            [~, libExt] = buildctx.getStdLibInfo();          
          
            % Specify path to LAPACK library
            if ispc
                lapackLocation = [matlabroot,'\extern'];
                libName = ['libmwlapack' libExt];
                buildInfo.addIncludePaths([lapackLocation,'\include']);            
                libPath = [lapackLocation,'\lib\win64\microsoft\'];
            else
                lapackLocation = [matlabroot];
                libName = ['libmwlapack' libExt];
                buildInfo.addIncludePaths([lapackLocation,'/extern/include']);            
                libPath = [lapackLocation,'/bin/glnxa64'];
            end
            
            % Add include path and LAPACK library for linking
            buildInfo.addLinkObjects(libName, libPath, 1000, true, true);

            buildInfo.addDefines('HAVE_LAPACK_CONFIG_H');
            buildInfo.addDefines('LAPACK_COMPLEX_STRUCTURE');
        end
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    end
end

Standalone Code Generation

Generate a standalone executable by the specifying CustomLAPACKCallback property in the code
configuration object and using a handwritten main qrmain.cu.

cfg = coder.gpuConfig('exe');
cfg.GpuConfig.EnableCUSOLVER = 1;
cfg.CustomLAPACKCallback = 'lapackCallback';
cfg.CustomSource = 'qrmain.cu';
cfg.CustomInclude = '.';
codegen -config cfg -args {A,y} linsolveQR -report

Code generation successful: View report

Standalone Code Execution

When you execute the generated standalone executable, the outputs yhat and x are computed and
written to comma-separated files. Read these outputs back in MATLAB and use the plot function to
visualize the sensor data and fitted curve.

if ispc
    system('linsolveQR.exe');
else
    system('./linsolveQR');
end
yhat = reshape(readmatrix('outputYhat.csv'), 25, 1);
x = reshape(readmatrix('outputX.csv'), 3, 1);
figure
plot(v, y, 'k.', v, yhat, 'r')
axis([0 N*Ts -3 3]);
grid;
xlabel('Distance Ahead of the Vehicle');
legend('Sensor data','Curve fit');
title('Estimate the Lane Boundary Ahead of the Vehicle');
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See Also
Functions
codegen | coder.gpu.kernel | coder.gpu.kernelfun | gpucoder.matrixMatrixKernel |
coder.gpu.constantMemory | gpucoder.stencilKernel | coder.checkGpuInstall

Objects
coder.gpuConfig | coder.CodeConfig | coder.EmbeddedCodeConfig | coder.gpuEnvConfig

Related Examples
• “Kernels from Library Calls” on page 2-8
• “Design Patterns” on page 2-26
• “Kernels from Scatter-Gather Type Operations” on page 2-4
• “Call Custom CUDA Device Function from the Generated Code” on page 2-22
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Stencil Processing on GPU

This example shows how to generate CUDA® kernels for stencil type operations by implementing
"Game of Life" by John H. Conway.

"Game of Life" is a zero-player cellular automaton game that consists of a collection of cells
(population) in a rectangular grid (universe). The cells evolve at discrete time steps known as
generations. A set of mathematical rules applied to the cells and its neighbors control their life,
death,and reproduction. This "Game of Life" implementation is based on the example provided in the
e-book Experiments with MATLAB by Cleve Moler. The implementation follows these rules:

• Cells are arranged in a 2-D grid.
• At each step, the vitality of the eight nearest neighbors of each cell determines its fate.
• Any cell with exactly three live neighbors comes to life at the next step.
• A live cell with exactly two live neighbors remains alive at the next step.
• All other cells (including those with more than three neighbors) die at the next step or remain

empty.

Here are some examples of how a cell is updated.

Many array operations can be expressed as a stencil operation, where each element of the output
array depends on a small region of the input array. The stencil in this example is the 3-by-3 region
around each cell. Finite differences, convolution, median filtering, and finite-element methods are
examples of other operations that stencil processing can perform.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
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• Environment variables for the compilers and libraries. For more information, see “Third-Party
Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('host');
envCfg.BasicCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Generate a Random Initial Population

Being that the game is zero-player, the evolution of the game is determined by its initial state. For this
example, an initial population of cells is created on a two-dimensional grid with approximately 25% of
the locations being alive.

gridSize = 500;
numGenerations = 100;
initialGrid = (rand(gridSize,gridSize) > .75);

% Draw the initial grid
imagesc(initialGrid);
colormap([1 1 1;0 0.5 0]);
title('Initial Grid');
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Play the Game of Life

The gameoflife_orig.m function is a fully vectorized implementation of "Game of Life". The
function updates all cells on the grid in one pass per their generation.

type gameoflife_orig

%% MATLAB vectorized implementation
function grid = gameoflife_orig(initialGrid)

% Copyright 2016-2019 The MathWorks, Inc. 

numGenerations = 100;
grid = initialGrid;
[gridSize,~] = size(initialGrid);

% Loop through each generation updating the grid and displaying it.
for generation = 1:numGenerations
    grid = updateGrid(grid, gridSize);
    
    imagesc(grid);
    colormap([1 1 1;0 0.5 0]);
    title(['Grid at Iteration ',num2str(generation)]);
    drawnow;
end

    function X = updateGrid(X, N)
        % Index vectors increase or decrease the centered index by one
        % thereby accessing neighbors to the left,right,up, and down.
        p = [1 1:N-1];
        q = [2:N N];
        % Count how many of the eight neighbors are alive.
        neighbors = X(:,p) + X(:,q) + X(p,:) + X(q,:) + ...
            X(p,p) + X(q,q) + X(p,q) + X(q,p);
        % A live cell with two live neighbors, or any cell with
        % three live neighbors, is alive at the next step.
        X = (X & (neighbors == 2)) | (neighbors == 3);
    end

end

Play the game by calling the gameoflife_orig function with an initial population. The game
iterates through 100 generations and displays the population at each generation.

gameoflife_orig(initialGrid);
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Convert the Game of Life for GPU Code Generation

Looking at the calculations in the updateGrid function, it is apparent that the same operations are
applied at each grid location independently. However, each cell must know about its eight neighbors.
The modified gameoflife_stencil.m function uses the stencilfun pragma to compute a 3-by-3
region around each cell. The GPU Coder™ implementation of the stencil kernel computes one
element of the grid in each thread and uses shared memory to improve memory bandwidth and data
locality.

type gameoflife_stencil

function grid = gameoflife_stencil(initialGrid) %#codegen

% Copyright 2016-2019 The MathWorks, Inc.

numGenerations = 100;
grid = initialGrid;

% Loop through each generation updating the grid.
for generation = 1:numGenerations
    grid = stencilfun(@updateElem, grid, [3,3], Shape='same');
end
end

function X = updateElem(window)
neighbors = window(1,1) + window(1,2) + window(1,3) ...
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    + window(2,1) + window(2,3) ...
    + window(3,1) + window(3,2) + window(3,3);
X = (window(2,2) & (neighbors == 2)) | (neighbors == 3);
end

Generate CUDA MEX for the Function

To generate CUDA MEX for the gameoflife_stencil function, create a GPU code configuration
object, and then use the codegen command.

cfg = coder.gpuConfig('mex');
codegen -config cfg -args {initialGrid}  gameoflife_stencil

Code generation successful.

Run the MEX Function

Run the generated gameoflife_stencil_mex with the random initial population.

gridGPU = gameoflife_stencil_mex(initialGrid);
% Draw the grid after 100 generations
imagesc(gridGPU);
colormap([1 1 1;0 0.5 0]);
title('Final Grid - CUDA MEX');
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See Also
Functions
codegen | coder.gpu.kernel | coder.gpu.kernelfun | gpucoder.matrixMatrixKernel |
coder.gpu.constantMemory | stencilfun | coder.checkGpuInstall

Objects
coder.gpuConfig | coder.CodeConfig | coder.EmbeddedCodeConfig | coder.gpuEnvConfig

Related Examples
• “Kernels from Library Calls” on page 2-8
• “Design Patterns” on page 2-26
• “Kernels from Scatter-Gather Type Operations” on page 2-4
• “Call Custom CUDA Device Function from the Generated Code” on page 2-22
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Fog Rectification

This example shows the use of image processing functions for GPU code generation. The example
takes a foggy image as input and produces a defogged image. This example is a typical
implementation of fog rectification algorithm. The example uses conv2, im2gray, and imhist functions.

Third-Party Prerequisites

Required

This example generates CUDA® MEX and has the following third-party requirements.

• CUDA enabled NVIDIA® GPU and compatible driver. For half-precision code generation, the GPU
must have a minimum compute capability of 6.0.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('host');
envCfg.BasicCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

The fog_rectification Entry-Point Function

The fog_rectification.m entry-point function takes a foggy image as input and returns a defogged
image.

type fog_rectification

function [out] = fog_rectification(input) %#codegen

%   Copyright 2017-2019 The MathWorks, Inc.

coder.gpu.kernelfun;

% restoreOut is used to store the output of restoration
restoreOut = zeros(size(input),'double');

% Changing the precision level of input image to double
input = double(input)./255;

%% Dark channel Estimation from input
darkChannel = min(input,[],3);
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% diff_im is used as input and output variable for anisotropic diffusion
diff_im = 0.9*darkChannel;
num_iter = 3;

% 2D convolution mask for Anisotropic diffusion
hN = [0.0625 0.1250 0.0625; 0.1250 0.2500 0.1250; 0.0625 0.1250 0.0625];
hN = double(hN);

%% Refine dark channel using Anisotropic diffusion.
for t = 1:num_iter
    diff_im = conv2(diff_im,hN,'same');
end

%% Reduction with min
diff_im = min(darkChannel,diff_im);

diff_im = 0.6*diff_im ;

%% Parallel element-wise math to compute
%  Restoration with inverse Koschmieder's law
factor = 1.0./(1.0-(diff_im));
restoreOut(:,:,1) = (input(:,:,1)-diff_im).*factor;
restoreOut(:,:,2) = (input(:,:,2)-diff_im).*factor;
restoreOut(:,:,3) = (input(:,:,3)-diff_im).*factor;
restoreOut = uint8(255.*restoreOut);
restoreOut = uint8(restoreOut);

%%
% Stretching performs the histogram stretching of the image.
% im is the input color image and p is cdf limit.
% out is the contrast stretched image and cdf is the cumulative prob.
% density function and T is the stretching function.

p = 5;
% RGB to grayscale conversion
im_gray = im2gray(restoreOut);
[row,col] = size(im_gray);

% histogram calculation
[count,~] = imhist(im_gray);
prob = count'/(row*col);

% cumulative Sum calculation
cdf = cumsum(prob(:));

% finding less than particular probability
i1 = length(find(cdf <= (p/100)));
i2 = 255-length(find(cdf >= 1-(p/100)));

o1 = floor(255*.10);
o2 = floor(255*.90);

t1 = (o1/i1)*[0:i1];
t2 = (((o2-o1)/(i2-i1))*[i1+1:i2])-(((o2-o1)/(i2-i1))*i1)+o1;
t3 = (((255-o2)/(255-i2))*[i2+1:255])-(((255-o2)/(255-i2))*i2)+o2;

T = (floor([t1 t2 t3]));
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restoreOut(restoreOut == 0) = 1;

u1 = (restoreOut(:,:,1));
u2 = (restoreOut(:,:,2));
u3 = (restoreOut(:,:,3));

% Replacing the value from look up table
out1 = T(u1);
out2 = T(u2);
out3 = T(u3);

out = zeros([size(out1),3], 'uint8');
out(:,:,1) = uint8(out1);
out(:,:,2) = uint8(out2);
out(:,:,3) = uint8(out3);
return

Generate CUDA Code and MEX function

Set up the input for code generation and create a configuration for GPU code generation.

inputImage = imread('foggyInput.png');
cfg = coder.gpuConfig('mex');

Run Code Generation

Generate the fog_rectification_mex MEX file by using the codegen command.

codegen -args {inputImage} -config cfg fog_rectification

Code generation successful: View report

Run the MEX Function with Foggy Image

Run the generated fog_rectification_mex with a foggy input image, and then plot the foggy and
defogged images.

[outputImage] = fog_rectification_mex(inputImage);

% plot images
p1  = subplot(1, 2, 1);
p2 = subplot(1, 2, 2);
imshow(inputImage, 'Parent', p1);
imshow(outputImage, 'Parent', p2);
title(p1, 'Foggy Input Image');
title(p2, 'Defogged Output Image');
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Because of architectural differences between the CPU and GPU, numeric verification does not always
match. This scenario is true when using the single data type or when performing integer type
conversion in your MATLAB code. In this example, the integer type conversion in the
fog_rectification.m entry-point function produces numeric differences with MATLAB simulation.

Half-Precision

Computations in this example can also be done in half-precision floating point numbers, using the
fog_rectification_half_precision.m entry-point function. To generate and execute code with
half-precision data types, CUDA compute capability of 6.0 or higher is required. Set the
ComputeCapability property of the code configuration object to '6.0'. For half-precision, the
memory allocation (malloc) mode for generating CUDA code must be set to 'Discrete'.

inputImageHalf = half(imread('foggyInput.png'));
cfg = coder.gpuConfig('mex');
cfg.GpuConfig.ComputeCapability = '6.0';
cfg.GpuConfig.MallocMode = 'Discrete';
codegen -args {inputImageHalf} -config cfg fog_rectification_half_precision

Code generation successful: View report

Run the Half-Precision MEX Function with Foggy Image

Run the generated fog_rectification_half_precision_mex with a foggy input image, and then
plot the foggy and defogged images.

[outputImageHalf] = fog_rectification_half_precision_mex(inputImageHalf);
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% plot images
p1  = subplot(1, 2, 1);
p2 = subplot(1, 2, 2);
imshow(inputImage, 'Parent', p1);
imshow(outputImageHalf, 'Parent', p2);
title(p1, 'Foggy Input Image');
title(p2, 'Defogged Output Image (Half)');

See Also
Functions
codegen | coder.gpu.kernel | coder.gpu.kernelfun | gpucoder.matrixMatrixKernel |
coder.gpu.constantMemory | gpucoder.stencilKernel | coder.checkGpuInstall

Objects
coder.gpuConfig | coder.CodeConfig | coder.EmbeddedCodeConfig | coder.gpuEnvConfig

Related Examples
• “Kernels from Library Calls” on page 2-8
• “Design Patterns” on page 2-26
• “Kernels from Scatter-Gather Type Operations” on page 2-4
• “Call Custom CUDA Device Function from the Generated Code” on page 2-22
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Stereo Disparity

This example shows how to generate a CUDA® MEX function from a MATLAB® function that
computes the stereo disparity of two images.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA enabled NVIDIA® GPU and compatible driver. For half-precision code generation, the GPU
device must have a minimum compute capability of 6.0.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('host');
envCfg.BasicCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Stereo Disparity Calculation

The stereoDisparity.m entry-point function takes two images and returns a stereo disparity map
computed from the two images.

type stereoDisparity

%% Modified Algorithm for Stereo Disparity Block Matching
% In this implementation, instead of finding shifted image, indices are 
% mapped accordingly to save memory and some processing. RGBA column major 
% packed data is used as input for compatibility with CUDA intrinsics. 
% Convolution is performed using separable filters (horizontal and then 
% vertical).
% Copyright 2017-2021 The MathWorks, Inc.

function [out_disp] = stereoDisparity(img0,img1) %#codegen

%   Copyright 2017-2019 The MathWorks, Inc.

% GPU code generation pragma
coder.gpu.kernelfun;
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%% Stereo Disparity Parameters
% |WIN_RAD| is the radius of the window to be operated. |min_disparity| is 
% the minimum disparity level the search continues for. |max_disparity| is 
% the maximum disparity level the search continues for.
WIN_RAD = 8;
min_disparity = -16;
max_disparity = 0;

%% Image Dimensions for Loop Control
% The number of channels packed are 4 (RGBA) so as nChannels are 4.
[imgHeight,imgWidth]=size(img0);
nChannels = 4;
imgHeight = imgHeight/nChannels;

%% Store the Raw Differences
diff_img = zeros([imgHeight+2*WIN_RAD,imgWidth+2*WIN_RAD],'int32');

% Store the minimum cost
min_cost = zeros([imgHeight,imgWidth],'int32');
min_cost(:,:) = 99999999;

% Store the final disparity
out_disp = zeros([imgHeight,imgWidth],'int16');

%% Filters for Aggregating the Differences
% |filter_h| is the horizontal filter used in separable convolution.
% |filter_v| is the vertical filter used in separable convolution which
% operates on the output of the row convolution.
filt_h = ones([1 17],'int32');
filt_v = ones([17 1],'int32');

% Main Loop that runs for all the disparity levels. This loop is
% expected to run on CPU.
for d=min_disparity:max_disparity
    
    % Find the difference matrix for the current disparity level. Expect
    % this to generate a Kernel function.
    coder.gpu.kernel;
    for colIdx=1:imgWidth+2*WIN_RAD
        coder.gpu.kernel;
        for rowIdx=1:imgHeight+2*WIN_RAD
            % Row index calculation.
            ind_h = rowIdx - WIN_RAD;
            
            % Column indices calculation for left image.
            ind_w1 = colIdx - WIN_RAD;
            
            % Row indices calculation for right image.
            ind_w2 = colIdx + d - WIN_RAD;
            
            % Border clamping for row Indices.
            if ind_h <= 0
                ind_h = 1;
            end
            if ind_h > imgHeight
                ind_h = imgHeight;
            end
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            % Border clamping for column indices for left image.
            if ind_w1 <= 0
                ind_w1 = 1;
            end
            if ind_w1 > imgWidth
                ind_w1 = imgWidth;
            end
            
            % Border clamping for column indices for right image.
            if ind_w2 <= 0
                ind_w2 = 1;
            end
            if ind_w2 > imgWidth
                ind_w2 = imgWidth;
            end
            
            % In this step, Sum of absolute Differences is performed
            % across tour channels.
            tDiff = int32(0);
            for chIdx = 1:nChannels
                tDiff = tDiff + abs(int32(img0((ind_h-1)*(nChannels)+...
                    chIdx,ind_w1))-int32(img1((ind_h-1)*(nChannels)+...
                    chIdx,ind_w2)));
            end
            
            % Store the SAD cost into a matrix.
            diff_img(rowIdx,colIdx) = tDiff;
        end
    end
    
    % Aggregating the differences using separable convolution. Expect this
    % to generate two kernels using shared memory.The first kernel is the 
    % convolution with the horizontal kernel and second kernel operates on 
    % its output the column wise convolution.
    cost_v = conv2(diff_img,filt_h,'valid');
    cost = conv2(cost_v,filt_v,'valid');
    
    % This part updates the min_cost matrix with by comparing the values
    % with current disparity level.
    for ll=1:imgWidth
        for kk=1:imgHeight
            % load the cost
            temp_cost = int32(cost(kk,ll));
            
            % Compare against the minimum cost available and store the
            % disparity value.
            if min_cost(kk,ll) > temp_cost
                min_cost(kk,ll) = temp_cost;
                out_disp(kk,ll) = abs(d) + 8;
            end
            
        end
    end
    
end
end
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Read Images and Pack Data Into RGBA Packed Column-Major Order

img0 = imread('scene_left.png');
img1 = imread('scene_right.png');

[imgRGB0] = pack_rgbData(img0);
[imgRGB1] = pack_rgbData(img1);

Left Image

Right Image

Generate GPU Code

cfg = coder.gpuConfig('mex');
codegen -config cfg -args {imgRGB0, imgRGB1} stereoDisparity;
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Code generation successful: View report

Run Generated MEX and Show the Output Disparity

out_disp = stereoDisparity_mex(imgRGB0,imgRGB1);
imagesc(out_disp);

Half Precision

Computations in this example can also be done in half-precision floating point numbers, using the
stereoDisparityHalfPrecision.m entry-point function. To generate and execute code with half-precision
data types, CUDA compute capability of 6.0 or higher is required. Set the ComputeCapability
property of the code configuration object to '6.0'. For half-precision, the memory allocation (malloc)
mode for generating CUDA code must be set to 'Discrete'.

cfg.GpuConfig.ComputeCapability = '6.0';
cfg.GpuConfig.MallocMode = 'Discrete';

The standard imread command represents the RGB channels of an images with integers, one for
each pixel. The integers range from 0 to 255. Simply casting inputs to half type might result in
overflow during convolutions. In this case, we can scale the images to values between 0 and 1.
"imread" represents the RGB channels of an images with integers, one for each pixel. The integers
range from 0 to 255. Simply casting inputs to half type might result in overflow during convolutions.
In this case, we can scale the images to values between 0 and 1.

img0 = imread('scene_left.png');
img1 = imread('scene_right.png');
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[imgRGB0] = half(pack_rgbData(img0))/255;
[imgRGB1] = half(pack_rgbData(img1))/255;

Generate CUDA MEX for the Function

Code generation on the stereo_disparity_half_precision.m function.

codegen -config cfg -args {imgRGB0, imgRGB1} stereoDisparityHalfPrecision;

Code generation successful: View report

See Also
Functions
codegen | coder.gpu.kernel | coder.gpu.kernelfun | gpucoder.matrixMatrixKernel |
coder.gpu.constantMemory | gpucoder.stencilKernel | coder.checkGpuInstall

Objects
coder.gpuConfig | coder.CodeConfig | coder.EmbeddedCodeConfig | coder.gpuEnvConfig

Related Examples
• “Kernels from Library Calls” on page 2-8
• “Design Patterns” on page 2-26
• “Kernels from Scatter-Gather Type Operations” on page 2-4
• “Call Custom CUDA Device Function from the Generated Code” on page 2-22
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Feature Extraction Using SURF

Object Recognition using Speeded-Up Robust Features (SURF) is composed of three steps: feature
extraction, feature description, and feature matching. This example performs feature extraction,
which is the first step of the SURF algorithm. The algorithm used here is based on the OpenSURF
library implementation. This example shows how you can use GPU Coder™ to solve this compute
intensive problem through CUDA® code generation.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('host');
envCfg.BasicCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Feature Extraction

Feature extraction is a fundamental step in any object recognition algorithm. It refers to the process
of extracting useful information referred to as features from an input image. The extracted features
must be representative in nature, carrying important and unique attributes of the image.

The SurfDetect.m function is the main entry-point, that performs feature extraction. This function
accepts an 8-bit RGB or an 8-bit grayscale image as the input. The output returned is an array of
extracted interest points. This function is composed of the following function calls, which contain
computations suitable for GPU parallelization:

• The Convert32bitFPGray.m function converts an 8-bit RGB image to an 8-bit grayscale image. If
the input provided is already in the 8-bit grayscale format, skip this step. After this step, the 8-bit
grayscale image is converted to a 32-bit floating-point representation for enabling fast
computations on the GPU.

• The MyIntegralImage.m function calculates the integral image of the 32-bit floating-point
grayscale image obtained in the previous step. The integral image is useful for simplifying finding
the sum of pixels enclosed within any rectangular region of the image. Finding the sum of pixels
helps in improving the speed of convolutions performed in the next step.
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• The FastHessian.m function performs convolution of the image with box filters of different sizes
and stores the computed responses. For this example, use these parameters:

    Number of Octaves: 5
    Number of Intervals: 4
    Threshold: 0.0004
    
    Filter Sizes: Octave 1 -  9,  15,  21,  27
                  Octave 2 - 15,  27,  39,  51
                  Octave 3 - 27,  51,  75,  99
                  Octave 4 - 51,  99, 147, 195
                  Octave 5 - 99, 195, 291, 387

• The NonMaxSuppression.m function performs non-maximal suppression to filter out only the
useful interest points from the responses obtained earlier.

• The OrientationCalc.m function calculates and assigns orientation to the interest points in the
previous step.

The final result is an array of interest points where an interest point is a structure that consists of
these fields:

x, y (coordinates), scale, orientation, Laplacian

Read Input Image

Read an input image into MATLAB by using the imread function.

imageFile = 'peppers.png';
inputImage = imread(imageFile);
imshow(inputImage);
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Generate CUDA MEX for the Function

To generate CUDA MEX for the SurfDetect function, create a GPU Coder configuration object, and
then run the codegen function.

cfg = coder.gpuConfig('mex');
codegen -config cfg SurfDetect -args {inputImage}

Code generation successful: View report

Run SURF Detection on MATLAB and GPU

Run the SurfDetect on MATLAB.

disp('Running SURF Detection on MATLAB...');

Running SURF Detection on MATLAB...

tic;
interestPoints = SurfDetect(inputImage);
execTime = toc;
fprintf('Found %d SURF interest points in %f seconds.\n',length(interestPoints),execTime);

Found 249 SURF interest points in 7.777913 seconds.

Call the generated MEX function SurfDetect_mex to run on a GPU.
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disp('Running GPU Coder SURF');

Running GPU Coder SURF

tic;
interestPointsGPU = SurfDetect_mex(inputImage);
execTime = toc;
fprintf('GPU Coder SURF found %d interest points in %f seconds.\n',length(interestPointsGPU),execTime);

GPU Coder SURF found 249 interest points in 0.436629 seconds.

Depict the Extracted Interest Points

The output interestPointsGPU is an array of extracted interest points. These interest points are
depicted over the input image in a figure window.

DrawIpoints(imageFile, interestPointsGPU);

References

[1] Notes on the OpenSURF Library by Christopher Evans.
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Feature Matching

This example shows how to generate CUDA® MEX from MATLAB® code and perform feature
matching between two images. This example uses the matchFeatures (Computer Vision Toolbox)
function from the Image Processing Toolbox™ to match the feature descriptors between two images
that are rotated and scaled with respect to each other. The feature descriptors of the two images are
detected and extracted by using the Speeded-Up Robust Features (SURF) algorithm.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('host');
envCfg.BasicCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Feature Detection and Extraction

For this example, feature matching is performed on two images that are rotated and scaled with
respect to each other. Before the two images can be matched, feature points for each image must be
detected and extracted. The following featureDetectionAndExtraction function uses SURF
(detectSURFFeatures (Computer Vision Toolbox)) local feature detector to detect the feature
points and extractFeatures (Computer Vision Toolbox) to extract the features.

The function featureDetectionAndExtraction returns refPoints, which contains the feature
coordinates of the reference image, qryPoints, containing feature coordinates of query image,
refDesc matrix containing reference image feature descriptors and qryDesc matrix containing
query image feature descriptors.

• refPoints = Reference image feature coordinates.
• qryPoints = Query image feature coordinates.
• refDescFeat = Reference image feature descriptors.
• qryDescFeat = Query image feature descriptors.
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K = imread('cameraman.tif'); 
refImage = imresize(K,3);
scale = 0.7;                  
J = imresize(refImage,scale);
theta = 30.0;                 
qryImage = imrotate(J,theta); 
[refPoints,refDescFeat,qryPoints,qryDescFeat] = featureDetectionAndExtraction(refImage,...
    qryImage);

The feature_matching Entry-Point Function

The feature_matching function takes feature points and feature descriptors extracted from two
images and finds a match between them.

type feature_matching

function [matchedRefPoints,matchedQryPoints] = feature_matching(refPoints,...
    refDesc,qryPoints,qryDesc) 
%#codegen
% Copyright 2018-2021 The MathWorks, Inc.

coder.gpu.kernelfun;
%% Feature Matching
[indexPairs,matchMetric] = matchFeatures(refDesc, qryDesc);
matchedRefPoints = refPoints(indexPairs(:,1),:);
matchedQryPoints = qryPoints(indexPairs(:,2),:);

Feature Matching Code Generation

Because the example runs on the host system, create a MEX-call configuration object with default
parameters. To avoid abnormal termination of MATLAB if there are run-time errors in the generated
code, select the safe-build option.

cfg = coder.gpuConfig;
cfg.GpuConfig.SafeBuild = 1;
inputs = {refPoints,refDescFeat,qryPoints,qryDescFeat};
codegen -config cfg -args inputs feature_matching

Code generation successful.

[matchedRefPoints_gpu,matchedQryPoints_gpu] = feature_matching_mex(refPoints,...
    refDescFeat,qryPoints,qryDescFeat);

Display Feature Matches

figure;
showMatchedFeatures(refImage, qryImage, matchedRefPoints_gpu, matchedQryPoints_gpu);
title('Putatively Matched Points (Including Outliers)');
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Lane Detection on the GPU by Using the houghlines Function

This example shows how to generate CUDA® MEX for a MATLAB® function that can detect and
output lane marker boundaries on an image. The example takes an RGB image as input and uses the
ordfilt2 (Image Processing Toolbox), hough (Image Processing Toolbox), houghpeaks (Image
Processing Toolbox), and houghlines (Image Processing Toolbox) functions that are part of Image
Processing Toolbox™ to produce the lane-detected output image.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('host');
envCfg.BasicCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

The lane_detection_houghlines Entry-Point Function

The lane_detection_houghlines.m entry-point function takes an intensity image as input and
returns the lane-detected image.

type lane_detection_houghlines

function [lines] = lane_detection_houghlines(inputImage)%#codegen

%  Copyright 2019-2021 The MathWorks, Inc.
coder.gpu.kernelfun;

% Convert RGB image to grayscale image.
grayImage = im2gray(inputImage);

% Edge detection using ordfilt2.
input = grayImage(240:end,1:end);
dom = ones(2);
minOrder = 1;
maxOrder = 4;
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padopt = 'zeros';

MinImg = ordfilt2(input,minOrder,dom,padopt);
MaxImg = ordfilt2(input,maxOrder,dom,padopt);

% Edge detected output.
outImage = MaxImg - MinImg;
BW = imbinarize(outImage);

[H,T,R] = hough(BW);
P  = houghpeaks(H,20,'threshold',1);
lines = houghlines(BW,T,R,P,'FillGap',200,'MinLength',150);

Generate CUDA MEX for the lane_detection_houghlines Function

Create a GPU code configuration object and run the codegen function.

inputImage = imread('highway.png');
inputResizedImage = imresize(inputImage,[480 640]);
cfg = coder.gpuConfig('mex');
codegen -args {inputResizedImage} -config cfg lane_detection_houghlines

Code generation successful.

Run the Generated CUDA MEX

Run the generated lane_detection_houghlines_mex with an input image and plot the input and
lane-detected images.

[lines] = lane_detection_houghlines_mex(inputResizedImage);

% Plot images.
inputImageVGAsize = imresize(inputImage,[480 640]);
outputImage = imresize(inputImage,[480 640]);
p1  = subplot(1, 2, 1);
p2 = subplot(1, 2, 2);
imshow(inputImageVGAsize, 'Parent', p1);
imshow(outputImage, 'Parent', p2);hold on
max_len = 0;
for k = 1:length(lines)
    if ((lines(k).theta <= 60 && lines(k).theta >10)||...
            (lines(k).theta <= -10 && lines(k).theta > -50) )
        xy = [lines(k).point1; (lines(k).point2)];
        plot(xy(:,1),xy(:,2)+240,'LineWidth',2,'Color','green');
        
        % Plot beginning and end of lines.
        plot(xy(1,1),xy(1,2)+240,'x','LineWidth',2,'Color','yellow');
        plot(xy(2,1),xy(2,2)+240,'x','LineWidth',2,'Color','red');
        
        % Determine the endpoints of the longest line segment.
        len = norm(lines(k).point1 - lines(k).point2);
        if ( len > max_len)
            max_len = len;
            xy_long = xy;
        end
    end
end
title(p1, 'Input Image');
title(p2, 'Lane Detected Output Image');
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Edge Detection with Sobel Method in Half-Precision

This example demonstrates edge detection in an image with a CUDA® MEX function generated from
a MATLAB® function. The edge detection algorithm is implemented with half-precision data type.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA enabled NVIDIA® GPU with a minimum compute capability of 6.0 and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('host');
envCfg.BasicCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Sobel Edge Detection Algorithm

In the Sobel edge detection algorithm sobelEdgeDetectionAlg.m , a 2-D spatial gradient
operation is performed on a gray scale image. This operation emphasizes the high spatial frequency
regions that correspond to the edges in the image.

type sobelEdgeDetectionAlg

function edgeImg = sobelEdgeDetectionAlg(img,thresh)  %#codegen
%sobelEdgeDetection Example MATLAB function for edge detection.
% Copyright 2018 The MathWorks, Inc.

kern = half([1 2 1; 0 0 0; -1 -2 -1]);

% Finding horizontal and vertical gradients.
h = conv2(img(:,:,2),kern,'same');
v = conv2(img(:,:,2),kern','same');

% Finding magnitude of the gradients.
e = sqrt(h.*h + v.*v);

% Threshold the edges
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edgeImg = uint8((e > thresh) * 240);

end

The Sobel edge algorithm computes the horizontal gradient resX and the vertical gradient resY of
the input image by using two orthogonal filter kernels maskX and maskY. After the filtering
operation, the algorithm computes the gradient magnitude and applies a threshold to find the regions
of the images that are considered to be edges.

Read Images and Pack Data Into RGBA Packed Column Major Order

Use the standard imread command to read the images. imread represents the RGB channels of an
images with integers, one for each pixel. The integers range from 0 to 255. Simply casting inputs to
half type might result in overflow during convolutions. In this case, we can scale the images to values
between 0 and 1.

im = imread('peppers.png');
figure();
image(im);
imPacked = half(im)/255;
thresh = half(100)/255;

Generate CUDA MEX for the Function

To generate CUDA MEX for the sobelEdgeDetectionAlg function, create a GPU code
configuration object and run the codegen command. To generate and execute code with half-
precision data types, CUDA compute capability of 6.0 or higher is required. Set the
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ComputeCapability property of the code configuration object to '6.0'. For half-precision, the
memory allocation (malloc) mode for generating CUDA code must be set to 'Discrete'.

cfg = coder.gpuConfig('mex');
cfg.GpuConfig.ComputeCapability = '6.0';
cfg.GpuConfig.MallocMode = 'Discrete';

codegen -config cfg -args {imPacked,thresh} sobelEdgeDetectionAlg;

Code generation successful.

Run the MEX Function

After you generate a MEX function, you can verify that it has the same functionality as the original
MATLAB entry-point function. Run the generated sobelEdgeDetectionAlg_mex and plot the
results.

out_disp = sobelEdgeDetectionAlg_mex(imPacked,thresh);
imagesc(out_disp);

Clear MEX Memory.

Clear the static network object that was loaded in memory.
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clear mex;

See Also
Functions
codegen | coder.gpu.kernel | coder.gpu.kernelfun | gpucoder.matrixMatrixKernel |
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Related Examples
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• “Call Custom CUDA Device Function from the Generated Code” on page 2-22
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Build a Map from Lidar Data using SLAM on GPU

This example shows how to perform 3-D Lidar simultaneous localization and mapping (SLAM) on
Nvidia GPU.

This example uses 3-D lidar data from a vehicle mounted sensor to progressively build a map and
estimate the trajectory of the vehicle by using the SLAM approach. This example is based on the
Build a Map from Lidar Data Using SLAM example. For more information, see “Build a Map from
Lidar Data Using SLAM” (Computer Vision Toolbox).

Load Recorded Data

The data used in this example is part of the Velodyne SLAM Dataset [1], and represents close to 6
minutes of recorded data. Download the data to a temporary directory. The dataset size is 153 MB.
This download can take a few minutes.

baseDownloadURL = 'https://www.mrt.kit.edu/z/publ/download/velodyneslam/data/scenario1.zip';
dataFolder      = fullfile(tempdir, 'kit_velodyneslam_data_scenario1', filesep);
options         = weboptions('Timeout', Inf);

zipFileName  = dataFolder + "scenario1.zip";

% Get the full file path to the PNG files in the scenario1 folder.
pointCloudFilePattern = fullfile(dataFolder, 'scenario1', 'scan*.png');
numExpectedFiles = 2513;

folderExists = exist(dataFolder, 'dir');
if ~folderExists
    % Create a folder in a temporary directory to save the downloaded zip
    % file.
    mkdir(dataFolder);

    disp('Downloading scenario1.zip (153 MB) ...')
    websave(zipFileName, baseDownloadURL, options);

    % Unzip downloaded file
    unzip(zipFileName, dataFolder);

elseif folderExists && numel(dir(pointCloudFilePattern)) < numExpectedFiles
    % Redownload the data if it got reduced in the temporary directory.
    disp('Downloading scenario1.zip (153 MB) ...')
    websave(zipFileName, baseDownloadURL, options);

    % Unzip downloaded file.
    unzip(zipFileName, dataFolder)
end

Use the helperReadDataset function to read data from the created folder in the form of a
timetable. The point clouds captured by the lidar are stored in the form of PNG image files. Extract
the list of point cloud file names in the pointCloudTable variable.

datasetTable = helperReadDataset(dataFolder, pointCloudFilePattern);

pointCloudTable = datasetTable(:, 1);
insDataTable = datasetTable(:, 2:end);
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To pass the point cloud data to entry-point function, copy the data from the point clouds into matrix.
To read the point cloud data from the image file, use the helperReadPointCloudFromFile
function. This function takes an image file name and returns a pointCloud object. The size of every
point cloud is 64-by-870-by-3 and there are 2513 point clouds. The size of matrix is 64-by-670-by-3-
by-2513.

pointCloudCount = height(pointCloudTable);
numColumns = 64;
numRows = 870;
location = zeros(numColumns, numRows, 3, 'single');
for idx = 1 : pointCloudCount
    filename = pointCloudTable.PointCloudFileName{idx};
    ptCloud = helperReadPointCloudFromFile(filename);
    location(:,:,:,idx) = ptCloud.Location;
end

Build a Map Using Odometry

Use the approach explained in the “Build a Map from Lidar Data Using SLAM” (Computer Vision
Toolbox) example to build a map. The approach consists of the following steps:

• Align lidar scans: Align successive lidar scans using a point cloud registration technique. This
example uses pcregisterndt for registering scans. By successively composing these
transformations, each point cloud is transformed back to the reference frame of the first point
cloud.

• Combine aligned scans: Generate a map by combining all the transformed point clouds.

This approach of incrementally building a map and estimating the trajectory of the vehicle is called
odometry.

Examine Entry-Point Function

ndtSLAM is the entry-point function for GPU code generation. ndtSLAM takes locations of point
clouds and INS data as input. Inside the for-loop, it registers two consecutive sets of point clouds in a
single iteration. The first two pointclouds are registered before the for-loop, and the last two point
clouds are registered after the for-loop, if required.

type ndtSLAM.m

function absTformOut = ndtSLAM(locations, insDataTable)
% ndtSLAM register multiple pointclouds and returns the absolute
% transformation for each of the pointcloud. locations is matrix of
% location of every pointcloud with size N x R x C x 3, where N is
% number of pointcloud, and R x C x 3 is size of individual pointcloud.
% insDataTable is a table of INS data. absTformOut returns transformations
% as a matrix shaped N x 4 x 4.

% Set random seed to ensure reproducibility
rng(0);

% Initialize point cloud processing parameters
gridSize = coder.const(0.8);

% Initialize transformations
absTform   = rigidtform3d(eye(4, 'single'));  % Absolute transformation to reference frame
relTform   = rigidtform3d(eye(4, 'single'));  % Relative transformation between successive scans
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skipFrames  = coder.const(5);
numFrames   = size(locations, 4);

% allocate output variables
numTransforms = ceil(numFrames / skipFrames);
absTformOut = coder.nullcopy(zeros(4,4,numTransforms, 'single'));
outIdx = 1;

% If input locations are empty, return
if isempty(locations)
    return;
end

% Read point cloud
ptCloudFirstOrig = pointCloud(locations(:,:,:,1));

% Process point cloud
%   - Segment and remove ground plane
%   - Segment and remove ego vehicle
ptCloudFirst = helperProcessPointCloud(ptCloudFirstOrig, "rangefloodfill");

% Downsample the processed point cloud
ptCloudFirst = pcdownsample(ptCloudFirst, "gridAverage", gridSize);

% Add first point cloud scan as a view to the view set
absTformOut(:,:,outIdx) = absTform.A;
outIdx = outIdx + 1;

ptCloudPrev = ptCloudFirst;

for n = 1 + skipFrames : skipFrames + skipFrames : numFrames - skipFrames
    % If locations are empty skip present iteration and continue to next
    % iteration.
    if isempty(locations(:,:,:,n)) || isempty(locations(:,:,:,n + skipFrames))
        continue;
    end
    %% even iteration
    % Read point cloud
    ptCloudOrig = pointCloud(locations(:,:,:,n));
    insData = insDataTable(n - skipFrames: n, :);
    [absTform, relTform, ptCloudPrev] = processFrame(ptCloudOrig, ptCloudPrev, ...
        insData, gridSize, relTform, absTform);

    % update output
    absTformOut(:,:,outIdx) = absTform.A;
    outIdx = outIdx + 1;

    %% odd iteration
    % Read point cloud
    ptCloudOrig = pointCloud(locations(:,:,:,n + skipFrames));
    insData = insDataTable(n: n + skipFrames, :);
    [absTform, relTform, ptCloudPrev] = processFrame(ptCloudOrig, ptCloudPrev, ...
        insData, gridSize, relTform, absTform);

    % update output
    absTformOut(:,:,outIdx) = absTform.A;
    outIdx = outIdx + 1;
end
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if mod(numTransforms, 2) == 0
    % last even iteration, if required.
    ptIdx = 1 + skipFrames * (numTransforms - 1);
    % Read point cloud
    ptCloudOrig = pointCloud(locations(:,:,:,ptIdx));
    ptCloudPrev = pointCloud(locations(:,:,:,ptIdx - skipFrames));
    insData = insDataTable(ptIdx-skipFrames:ptIdx, :);
    [absTform, ~, ~] = processFrame(ptCloudOrig, ptCloudPrev, ...
        insData, gridSize, relTform, absTform);
    % update output
    absTformOut(:,:,outIdx) = absTform.A;
end
end

processFrame performs the processing and registration of two point clouds. processFrame is
called by ndtSLAM.

type processFrame.m

function [absTform, relTform, ptCloudPrev] = processFrame(ptCloudOrig, ptCloudPrev, ...
    insData, gridSize, relTform, absTform)
% processFrame Process and register two pointclouds and return the
% transformations. 

regGridSize = coder.const(2.5);

% Process point cloud
%   - Segment and remove ground plane
%   - Segment and remove ego vehicle
ptCloud = helperProcessPointCloud(ptCloudOrig, "rangefloodfill");

% Downsample the processed point cloud
moving = pcdownsample(ptCloud, 'gridAverage', gridSize);

% Use INS to estimate an initial transformation for registration
initTform = helperComputeInitialEstimateFromINS(relTform, insData);

% Compute rigid transformation that registers current point cloud with
% previous point cloud
relTform = pcregisterndt(moving, ptCloudPrev, regGridSize, ...
    "InitialTransform", initTform);

% Update absolute transformation to reference frame (first point cloud)
absTform = rigidtform3d(absTform.A * relTform.A);

% update prev point cloud
ptCloudPrev = moving;
end

helperProcessPointCloud processes a pointCloud object by removing points belonging to the
ground plane and the ego vehicle.

type helperProcessPointCloud.m

function ptCloud = helperProcessPointCloud(ptCloudIn, method)
%helperProcessPointCloud Process pointCloud to remove ground and ego vehicle
%   ptCloud = helperProcessPointCloud(ptCloudIn, method) processes
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%   ptCloudIn by removing the ground plane and the ego vehicle.
%   method can be "planefit" or "rangefloodfill".
%
%   See also pcfitplane, pointCloud/findNeighborsInRadius.

isOrganized = ~ismatrix(ptCloudIn.Location);

if (method=="rangefloodfill" && isOrganized)
    elevationAngleDelta = coder.const(11);
    % Segment ground using floodfill on range image
    groundFixedIdx = segmentGroundFromLidarData(ptCloudIn, ...
        "ElevationAngleDelta", elevationAngleDelta);
else
    % Segment ground as the dominant plane with reference normal
    % vector pointing in positive z-direction
    maxDistance         = 0.4;
    maxAngularDistance  = 5;
    referenceVector     = [0 0 1];

    [~, groundFixedIdx] = pcfitplane(ptCloudIn, maxDistance, ...
        referenceVector, maxAngularDistance);
end

if isOrganized
    groundFixed = false(size(ptCloudIn.Location,1),size(ptCloudIn.Location,2));
else
    groundFixed = false(ptCloudIn.Count, 1);
end
groundFixed(groundFixedIdx) = true;

% Segment ego vehicle as points within a given radius of sensor
sensorLocation = coder.const([0 0 0]);
radius = coder.const(3.5);
egoFixedIdx = findNeighborsInRadius(ptCloudIn, sensorLocation, radius);

if isOrganized
    egoFixed = false(size(ptCloudIn.Location,1),size(ptCloudIn.Location,2));
else
    egoFixed = false(ptCloudIn.Count, 1);
end
egoFixed(egoFixedIdx) = true;

% Retain subset of point cloud without ground and ego vehicle
if isOrganized
    indices = ~groundFixed & ~egoFixed;
else
    indices = find(~groundFixed & ~egoFixed);
end

ptCloud = select(ptCloudIn, indices);
end

helperComputeInitialEstimateFromINS computes initial transformation estimate from INS
data.

type helperComputeInitialEstimateFromINS.m

 Build a Map from Lidar Data using SLAM on GPU

2-111



function initTform = helperComputeInitialEstimateFromINS(initTform, insData)
% helperComputeInitialEstimateFromINS Compute estimate for transformation
% from INS data.

% If no INS readings are available, return
if isempty(insData)
    return;
end

% The INS readings are provided with X pointing to the front, Y to the left
% and Z up. Translation below accounts for transformation into the lidar
% frame.
insToLidarOffset = [0 -0.79 -1.73]; % See DATAFORMAT.txt
tNow = [-insData.Y(end), insData.X(end), insData.Z(end)].' + insToLidarOffset';
tBefore = [-insData.Y(1)  , insData.X(1)  , insData.Z(1)].' + insToLidarOffset';

% Since the vehicle is expected to move along the ground, changes in roll
% and pitch are minimal. Ignore changes in roll and pitch, use heading only.
Rnow = rotmat(quaternion([insData.Heading(end) 0 0], 'euler', 'ZYX', 'point'), 'point');
Rbef = rotmat(quaternion([insData.Heading(1)   0 0], 'euler', 'ZYX', 'point'), 'point');

tformMatrix = [Rbef tBefore;0 0 0 1] \ [Rnow tNow;0 0 0 1];

initTform = rigidtform3d(cast(tformMatrix, 'like', initTform.A));
end

Generate CUDA mex

Generate CUDA mex for the entry-point function(ndtSLAM). To improve performance,

1 Enable Memory Manager
2 Set the compute capability to the highest supported by the GPU on the system.
3 Increase stack limit per thread. This example uses max integer value. Use lower value if this

gives an error.

config = coder.gpuConfig();
config.GpuConfig.EnableMemoryManager = true;
config.GpuConfig.ComputeCapability =  gpuDevice().ComputeCapability;
config.GpuConfig.StackLimitPerThread = intmax;

codegen -config config -args {location, insDataTable} ndtSLAM

Code generation successful: View report

Plot Map

ndtSLAM function returns the absolute transformation for each of the frame that is used to build the
map. To plot the map convert the transformation matrix into rigidtform3d object and add the point
clouds and the rigidtform3d objects into pcviewset object.

The view set object viewset, now holds views and connections. In the Views table of viewset,
the AbsolutePose variable specifies the absolute pose of each view with respect to the first view.
Now, build a point cloud map using the created viewset. Align the view absolute poses with the
point clouds in the viewset using pcalign. Specify a grid size to control the resolution of the map.
The map is returned as a pointCloud object.

tforms = ndtSLAM_mex(location, insDataTable);
% Add results into pcviewset
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viewset = pcviewset();
skipFrames = 5;
viewId = 1;
for idx = 1: skipFrames: 2513
    ptCloud = pointCloud(location(:,:,:,idx));
    absTforms = rigidtform3d(tforms(:,:,viewId));
    viewset = addView(viewset, viewId, absTforms, "PointCloud", ptCloud);
    if viewId > 1
        viewset = addConnection(viewset, viewId-1, viewId);
    end
    viewId = viewId + 1;
end

% plot result
ptClouds = viewset.Views.PointCloud;
absPoses = viewset.Views.AbsolutePose;
mapGridSize = 0.2;
ptCloudMap = pcalign(ptClouds, absPoses, mapGridSize);

hFigAfter = figure('Name', 'GPU SLAM');
hAxAfter = axes(hFigAfter);
pcshow(ptCloudMap, 'Parent', hAxAfter);

% Overlay view set display
hold on
plot(viewset, 'Parent', hAxAfter);
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helperMakeFigurePublishFriendly(hFigAfter);

References

1 Moosmann, Frank, and Christoph Stiller. “Velodyne SLAM.” Proceedings of the IEEE Intelligent
Vehicles Symposium, 2011, pp. 393–98, http://www.mrt.kit.edu/z/publ/download/
Moosmann_IV11.pdf.

Supporting Functions

convertFromSphericalToCartesianCoordinates converts coordinates from spherical to
cartesian system.

function xyzData = convertFromSphericalToCartesianCoordinates(rangeData)

xyzData = zeros(size(rangeData),'like',rangeData);

range = rangeData(:, :, 1);
pitch = rangeData(:, :, 2);
yaw   = rangeData(:, :, 3);

xyzData(:, :, 1) = range .* cos(pitch) .* sin(yaw);
xyzData(:, :, 2) = range .* cos(pitch) .* cos(yaw);
xyzData(:, :, 3) = -range .* sin(pitch);
end

helperReadPointCloudFromFile reads pointcloud from PNG image file and returns a point cloud
object.

function ptCloud = helperReadPointCloudFromFile(fileName)
%helperReadPointCloudFromFile Read pointCloud from PNG image file
%
%   This is an example helper class that is subject to change or removal in
%   future releases.
%
%   ptCloud = helperReadPointCloudFromFile(fileName) reads point cloud
%   data from the .png image file fileName and returns a pointCloud object.
%   This function expects file to be from the Velodyne SLAM Dataset.

% Copyright 2019-2022 The MathWorks, Inc.

% From DATAFORMAT.txt
% -------------------
% Each 360° revolution of the Velodyne scanner was stored as 16bit png
% distance image (scan*.png). The scanner turned clockwise, filling the
% image from the leftmost to the rightmost column, with the leftmost and
% rightmost column being at the back of the vehicle. Note that measurements
% were not corrected for vehicle movement. Thus and due to the physical
% setup of the laser diodes, some strange effects can be seen at the cut of
% the image when the vehicle is turning. As consequence, it is best to
% ignore the 10 leftmost and rightmost columns of the image. To convert the
% pixel values [0..65535] into meters, just divide by 500. This results in
% an effective range of [0..131m]. Invalid measurements are indicated by
% zero distance.

% To convert the distance values into 3D coordinates, use the setup in
% "img.cfg". The yaw angles (counter-clockwise) are a linear mapping from
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% the image column [0..869]->[180°..-180°] The pitch angles are specified
% for each image row separately.

validateattributes(fileName, {'char','string'}, {'scalartext'}, mfilename, 'fileName');

% Convert pixel values to range
range = single(imread(fileName)) ./ 500;
range(range==0) = NaN;

% Get yaw angles as a linear mapping of [0..869] -> [180 to -180]. Yaw and
% pitch values are obtained from img.cfg file.
yawAngles = 869 : -1 : 0;
yawAngles =-180 + yawAngles .* (360 / 869);

pitchAngles = [-1.9367; -1.57397; -1.30476; -0.871566; -0.57881; -0.180617;...
    0.088762; 0.451829; 0.80315; 1.20124; 1.49388; 1.83324; 2.20757; ...
    2.54663; 2.87384; 3.23588; 3.53933; 3.93585; 4.21552; 4.5881; 4.91379; ...
    5.25078; 5.6106; 5.9584; 6.32889; 6.67575; 6.99904; 7.28731; 7.67877; ...
    8.05803; 8.31047; 8.71141; 9.02602; 9.57351; 10.0625; 10.4707; 10.9569; ...
    11.599; 12.115; 12.5621; 13.041; 13.4848; 14.0483; 14.5981; 15.1887; ...
    15.6567; 16.1766; 16.554; 17.1868; 17.7304; 18.3234; 18.7971; 19.3202; ...
    19.7364; 20.2226; 20.7877; 21.3181; 21.9355; 22.4376; 22.8566; 23.3224; ...
    23.971; 24.5066; 24.9992];

[yaw,pitch] = meshgrid( deg2rad(yawAngles), deg2rad(pitchAngles));
rangeData = cat(3, range, pitch, yaw);

xyzData = convertFromSphericalToCartesianCoordinates(rangeData);

% Transform points so that coordinate system faces towards the front of the
% vehicle.
ptCloud = pointCloud(xyzData.*cat(3,-1,1,1));
end

helperReadINSConfigFile reads INS configuration file and returns the data as a table.

function T = helperReadINSConfigFile(fileName)
%helperReadINSConfigFile Reads INS configuration file
%
%   This is an example helper class that is subject to change or removal in
%   future releases.
%
%   T = helperReadINSConfigFile(fileName) reads the .cfg configuration file
%   containing INS data, and returns it in a table. This function expects
%   data from the Velodyne SLAM Dataset.
%
%   See also timetable, readtable.

validateattributes(fileName, {'char','string'}, {'scalartext'}, mfilename, 'fileName');

% Create options to read delimited text file
opts = delimitedTextImportOptions;
opts.Delimiter = ";";
opts.DataLines = [8 inf];
opts.VariableNames = [...
    "Timestamps", ...
    "Num_Satellites", "Latitude", "Longitude", "Altitude", ...
    "Heading", "Pitch", "Roll", ...
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    "Omega_Heading", "Omega_Pitch", "Omega_Roll", ...
    "V_X", "V_Y", "V_ZDown", ...
    "X", "Y", "Z"];
opts.VariableTypes(2:end) = {'double'};

T = readtable(fileName, opts);

% Remove unnecessary column
T.ExtraVar1 = [];

% Convert timestamps to datetime
T.Timestamps = datetime(T.Timestamps, 'InputFormat', 'yyyy-MM-dd HH:mm:ss.SSS');
T = table2timetable(T);
end

helperReadDataset reads velodyne SLAM dataset data into a timetable

function datasetTable = helperReadDataset(dataFolder, pointCloudFilePattern)
%helperReadDataset Read Velodyne SLAM Dataset data into a timetable
%   datasetTable = helperReadDataset(dataFolder) reads data from the
%   folder specified in dataFolder into a timetable. The function
%   expects data from the Velodyne SLAM Dataset.
%
%   See also fileDatastore, helperReadINSConfigFile.

% Create a file datastore to read in files in the right order
fileDS = fileDatastore(pointCloudFilePattern, 'ReadFcn', ...
    @helperReadPointCloudFromFile);

% Extract the file list from the datastore
pointCloudFiles = fileDS.Files;

imuConfigFile = fullfile(dataFolder, 'scenario1', 'imu.cfg');
insDataTable = helperReadINSConfigFile(imuConfigFile);

% Delete the bad row from the INS config file
insDataTable(1447, :) = [];

% Remove columns that will not be used
datasetTable = removevars(insDataTable, ...
    {'Num_Satellites', 'Latitude', 'Longitude', 'Altitude', 'Omega_Heading', ...
    'Omega_Pitch', 'Omega_Roll', 'V_X', 'V_Y', 'V_ZDown'});

datasetTable = addvars(datasetTable, pointCloudFiles, 'Before', 1, ...
    'NewVariableNames', "PointCloudFileName");
end

helperMakeFigurePublishFriendly adjusts figures so that screenshot captured by publish is
correct.

function helperMakeFigurePublishFriendly(figure)
if ~isempty(figure) && isvalid(figure)
    figure.HandleVisibility = 'callback';
end
end
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Kernel Creation from Simulink Models

• “Simulation Acceleration by Using GPU Coder” on page 3-2
• “Code Generation from Simulink Models with GPU Coder” on page 3-8
• “GPU Code Generation for Deep Learning Networks Using MATLAB Function Block”

on page 3-14
• “GPU Code Generation for Blocks from the Deep Neural Networks Library” on page 3-22
• “Targeting NVIDIA Embedded Boards” on page 3-30
• “Numerical Equivalence Testing” on page 3-32
• “Parameter Tuning and Signal Monitoring by Using External Mode” on page 3-38
• “GPU Code Generation for Lane Detection in Simulink” on page 3-43
• “GPU Code Generation for a Fog Rectification Simulink Model” on page 3-48
• “Code Generation for a Deep Learning Simulink Model to Classify ECG Signals” on page 3-53
• “Code Generation for a Deep Learning Simulink Model that Performs Lane and Vehicle Detection”

on page 3-60
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Simulation Acceleration by Using GPU Coder
You can use GPU Coder to speed up the execution of your Simulink model on NVIDIA GPUs. GPU-
accelerated computing follows a heterogeneous programming model. Highly parallelizable portions of
the application are mapped into kernels that execute on thousands of GPU cores in parallel, while the
remainder of the sequential code still runs on the CPU.

To perform GPU-accelerated simulation, model the compute intensive portions of your application in
Simulink by using MATLAB Function blocks. When you simulate a model that contains a MATLAB
Function block, the software partitions and generates CUDA MATLAB executable (MEX) code and
integrates this code with the Simulink model.

The basic steps for simulation acceleration by using GPU Coder are:

• Create or open a model.
• Configure the model for GPU acceleration by selecting the Solver, Language, and other GPU-
specific configuration parameters.

• Run the GPU accelerated model.

Example: Sobel Edge Detection
The Sobel edge detection algorithm is a simple edge detection algorithm that performs a 2-D spatial
gradient operation on a grayscale image. This algorithm emphasizes the high spatial frequency
regions that correspond to the edges of the input image.

The Sobel edge algorithm computes the horizontal gradient (H) and the vertical gradient (V) of the
input image by using two orthogonal filter kernels (k and k'). After the filtering operation, the
algorithm computes the gradient magnitude and applies a threshold to find the regions of the images
that are considered to be edges.

k = single([1 2 1; 0 0 0; -1 -2 -1]);
H = conv2(single(grayImage),k, 'same');
V = conv2(single(grayImage),k','same');
E = sqrt(H.*H + V.*V);
edgeImage = uint8((E > threshold) * 255);
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Create Edge Detection Model
1 Create a Simulink model and insert two MATLAB Function blocks from the User-Defined

Functions library.
2 Add a Constant block and set its value to 0.4.
3 Add a From Multimedia File block from the Computer Vision Toolbox™ library.
4 Open the Block Parameters dialog for the From Multimedia File block and set the File name

parameter to rhinos.avi.

Set the Image signal parameter to One multidimensional signal.
5 Add two Video Viewer blocks from the Computer Vision Toolbox library to the model.

6 Double-click on one of the MATLAB Function blocks. A default function signature appears in the
MATLAB Function Block Editor.

7 Define a function called sobel, which implements the Sobel edge detection algorithm. The
function header declares grayImage and threshold as an argument to the sobel function,
with edgeImage as the return value. Save Editor document to file.

function edgeImage  = sobel(grayImage,threshold)   %#codegen

% Define Kernel for Sobel edge detection
k = single([1 2 1; 0 0 0; -1 -2 -1]);

% Detect Edge
H = conv2(single(grayImage),k, 'same');
V = conv2(single(grayImage),k','same');
E = sqrt(H.*H + V.*V);
edgeImage = uint8((E > threshold) * 255);

end
8 Open the block parameters for the MATLAB Function block. On the Code Generation tab, select

Reusable function for Function packaging parameter.

If the Function packaging parameter is set to any other value, CUDA kernels may not get
generated.

9 Modify the other MATLAB Function block to implement the RGB to grayscale conversion prior to
the Sobel edge detection operation. Set the Function packaging parameter of the MATLAB
Function block to Reusable function.
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function gray = RGB2gray(RGB)   %#codegen
% Convert color image to grey image

gray = (0.2989 * double(RGB(:,:,1)) + ...
    0.5870 * double(RGB(:,:,2)) + ...
    0.1140 * double(RGB(:,:,3)));

end
10 Connect these blocks as shown in the diagram. Save the model as edgeDetection.slx.

11 To test the model for errors, simulate the model in the Simulink Editor. On the toolstrip, click
Run.

To see all video frames during simulation, disable the Simulation > Drop Frames to improve
Performance option of the Video Viewer block.
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Configure Model for GPU Acceleration
Model configuration parameters determine the acceleration method used during simulation.

1 Open the Configuration Parameters dialog box. Open the Solver pane. To compile your model for
acceleration and generate CUDA code, configure the model to use a fixed-step solver. This table
shows the solver configuration for this example.

Parameter Setting Effect on Generated Code
Type Fixed-step Maintains a constant (fixed)

step size.
Solver discrete (no

continuous states)
Applies a fixed-step
integration technique for
computing the state
derivative of the model.

Fixed-step size auto Simulink chooses the step
size.

2 On the Simulation Target pane, enable GPU acceleration parameter.

Note The Language parameter is automatically set to C++.
3 GPU Coder specific options are now visible in the Simulation Target > GPU Acceleration

pane. For the purposes of this example, you can use the default values for all the GPU-specific
parameters.
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4 To save and close the Configuration Parameters dialog box, click OK .

You can also use the set_param function to configure the model parameters programmatically in
the MATLAB command Window.

set_param('edgeDetection','GPUAcceleration','on');

Build GPU Accelerated Model
To build and simulate the GPU accelerated model, select Run on the Simulation tab or use the
following MATLAB command:

sim('edgeDetection');

The software first checks to see if CUDA code was previously compiled for the model. If code was
created previously, the software runs the model. If code was not previously built, the software first
generates and compiles the CUDA code, and then runs the model. The code generation tool places
the generated code in a subfolder of the working folder called slprj/_slprj/edgeDetection.
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Limitations
• GPU code generation for MATLAB Function blocks in Stateflow® charts is not supported.
• When GPU acceleration is enabled, the code generator does not support Import custom code

for importing custom authored CUDA source files (*.cu). Instead, use coder.ceval inside the
MATLAB Function block.

• The MATLAB Function block does not support all the data types from the MATLAB language. For
supported data types, refer to the block documentation.

See Also
Functions
open_system | load_system | save_system | close_system | bdclose | get_param |
set_param | sim | slbuild

More About
• “Code Generation from Simulink Models with GPU Coder” on page 3-8
• “GPU Code Generation for Deep Learning Networks Using MATLAB Function Block” on page 3-

14
• “GPU Code Generation for Blocks from the Deep Neural Networks Library” on page 3-22
• “Targeting NVIDIA Embedded Boards” on page 3-30
• “Numerical Equivalence Testing” on page 3-32
• “Parameter Tuning and Signal Monitoring by Using External Mode” on page 3-38
• “GPU Code Generation for Lane Detection in Simulink” on page 3-43
• “GPU Code Generation for a Fog Rectification Simulink Model” on page 3-48
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Code Generation from Simulink Models with GPU Coder
GPU Coder generates optimized CUDA code from Simulink models containing MATLAB Function
blocks. You can use the generated code and executable for rapid prototyping on NVIDIA GPUs. Code
generation reports and traceability enable you to view and analyze the generated code. The basic
steps for CUDA code generation by using GPU Coder are:

• Create or open a model.
• Configure the model for code generation by selecting the solver, language, toolchain, and other
GPU-specific configuration parameters.

• Build the model.

Example: Sobel Edge Detection
The Sobel edge detection algorithm is a simple edge detection algorithm that performs a 2-D spatial
gradient operation on a grayscale image. This algorithm emphasizes the high spatial frequency
regions that correspond to the edges of the input image.

The Sobel edge algorithm computes the horizontal gradient (H) and the vertical gradient (V) of the
input image by using two orthogonal filter kernels (k and k'). After the filtering operation, the
algorithm computes the gradient magnitude and applies a threshold to find the regions of the images
that are considered to be edges.

k = single([1 2 1; 0 0 0; -1 -2 -1]);
H = conv2(single(grayImage),k, 'same');
V = conv2(single(grayImage),k','same');
E = sqrt(H.*H + V.*V);
edgeImage = uint8((E > threshold) * 255);

Create Edge Detection Model
1 Create a Simulink model and insert two MATLAB Function blocks from the User-Defined

Functions library.
2 Add a Constant block and set its value to 0.4.
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3 Add a From Multimedia File block from the Computer Vision Toolbox library.
4 Open the Block Parameters dialog box for the From Multimedia File block and set the File

name parameter to rhinos.avi.

Set the Image signal parameter to One multidimensional signal.
5 Add two Video Viewer blocks from the Computer Vision Toolbox library to the model.

6 Double-click on one of the MATLAB Function blocks. A default function signature appears in the
MATLAB Function Block Editor.

7 Define a function called sobel, which implements the Sobel edge detection algorithm. The
function header declares grayImage and threshold as an argument to the sobel function,
with edgeImage as the return value. Save Editor document to file.

function edgeImage  = sobel(grayImage,threshold)   %#codegen

% Define Kernel for Sobel edge detection
k = single([1 2 1; 0 0 0; -1 -2 -1]);

% Detect Edge
H = conv2(single(grayImage),k, 'same');
V = conv2(single(grayImage),k','same');
E = sqrt(H.*H + V.*V);
edgeImage = uint8((E > threshold) * 255);

end
8 Open the block parameters for the MATLAB Function block. On the Code Generation tab, select

Reusable function for Function packaging parameter.

If the Function packaging parameter is set to any other value, CUDA kernels may not get
generated.

9 Modify the other MATLAB Function block to implement the RGB to grayscale conversion prior to
the Sobel edge detection operation. Set the Function packaging parameter of the MATLAB
Function block to Reusable function.

function gray = RGB2gray(RGB)   %#codegen
% Convert color image to grey image

gray = (0.2989 * double(RGB(:,:,1)) + ...
    0.5870 * double(RGB(:,:,2)) + ...
    0.1140 * double(RGB(:,:,3)));
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end
10 Connect these blocks as shown in the diagram. Save the model as edgeDetection.slx.

11 To test the model for errors, simulate the model in the Simulink Editor. On the toolstrip, click
Run.

To see all video frames during simulation, disable the Simulation > Drop Frames to improve
Performance option of the Video Viewer block.

Configure Model for Code Generation
The model configuration parameters provide many options for the code generation and build process.

3 Kernel Creation from Simulink Models

3-10



1 Open the Configuration Parameters dialog box. Open the Solver pane. To compile your model for
acceleration and generate CUDA code, configure the model to use a fixed-step solver. This table
shows the solver configuration for this example.

Parameter Setting Effect on Generated Code
Type Fixed-step Maintains a constant (fixed)

step size, which is required
for code generation

Solver discrete (no
continuous states)

Applies a fixed-step
integration technique for
computing the state
derivative of the model

Fixed-step size auto Simulink chooses the step
size

2 On the Code Generation pane, set the System target file to grt.tlc.

You can also use the Embedded Coder target file ert.tlc or a custom system target file.

For GPU code generation, the custom target file must be based on grt.tlc or ert.tlc. For
information on developing a custom target file, see “Customize System Target Files” (Simulink
Coder).

3 Set the Language to C++.
4 Select Generate GPU code.
5 On the Code Generation pane, select Generate code only.
6 Select the Toolchain. For Linux® platforms, select NVIDIA CUDA | gmake (64-bit Linux).

For Windows® systems, select NVIDIA CUDA (w/Microsoft Visual C++ 20XX) | nmake
(64-bit windows).

When using a custom system target file, you must set the build controls for the toolchain
approach. To learn more about toolchain approach for custom targets, see “Support Toolchain
Approach with Custom Target” (Simulink Coder).

7 On the Code Generation > Interface pane, disable MAT-file logging.
8 On the Code Generation > Report pane, select Create code generation report and Open

report automatically.
9 When you enable the Generate GPU code parameter, options specific to GPU Coder appear in

the Code Generation > GPU Code pane.

For this example, you can use the default values of the GPU-specific parameters in Code
Generation > GPU Code pane.
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10 Click OK to save and close the Configuration Parameters dialog box.

You can use the set_param function to configure the model parameter programmatically in the
MATLAB Command Window.

set_param('edgeDetection','GenerateGPUCode','CUDA');

Generate CUDA Code for the Model
1 In the Simulink Editor, open the Simulink Coder app.
2 Generate code.

Messages appear in the Diagnostics Viewer. The code generator produces CUDA source and header
files, and an HTML code generation report. The code generator places the files in a build folder, a
subfolder named edgeDetection_grt_rtw under your current working folder.

You can find the CUDA kernels in the <model_name>_eML_blk_kernel and
<model_name>_eML_blk_kernel_c functions. The information within the triple chevrons is the
execution configuration for the kernel.

Limitations
• GPU code generation for MATLAB Function blocks in Stateflow charts is not supported.
• The MATLAB Function block does not support all the data types from the MATLAB language. For

supported data types, refer to the block documentation.
• For GPU code generation, the custom target file must be based on grt.tlc or ert.tlc.
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See Also
Functions
open_system | load_system | save_system | close_system | bdclose | get_param |
set_param | sim | slbuild

More About
• “Simulation Acceleration by Using GPU Coder” on page 3-2
• “GPU Code Generation for Deep Learning Networks Using MATLAB Function Block” on page 3-

14
• “GPU Code Generation for Blocks from the Deep Neural Networks Library” on page 3-22
• “Targeting NVIDIA Embedded Boards” on page 3-30
• “Numerical Equivalence Testing” on page 3-32
• “Parameter Tuning and Signal Monitoring by Using External Mode” on page 3-38
• “GPU Code Generation for Lane Detection in Simulink” on page 3-43
• “GPU Code Generation for a Fog Rectification Simulink Model” on page 3-48
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GPU Code Generation for Deep Learning Networks Using
MATLAB Function Block

With GPU Coder, you can generate optimized code for Simulink models containing a variety of trained
deep learning networks. You can implement the deep learning functionality in Simulink by using
MATLAB Function blocks or by using blocks from the Deep Neural Networks library. When
implementing with MATLAB Function blocks, use the coder.loadDeepLearningNetwork function
to load a trained deep learning network and use the object functions of the network object to obtain
the desired responses. You can configure the code generator to take advantage of the NVIDIA CUDA
deep neural network library (cuDNN) and TensorRT high performance inference libraries for NVIDIA
GPUs. The generated code implements the deep convolutional neural network (CNN) by using the
architecture, the layers, and parameters that you specify in network object.

Example: Classify Images by Using GoogLeNet
GoogLeNet has been trained on over a million images and can classify images into 1000 object
categories (such as keyboard, coffee mug, pencil, and animals). The network takes an image as input,
and then outputs a label for the object in the image together with the probabilities for each of the
object categories. This example shows you how to perform simulation and generate CUDA code for
the pretrained googlenet deep convolutional neural network and classify an image.

1 Load the pretrained GoogLeNet network. You can choose to load a different pretrained network
for image classification. If you do not have the required support packages installed, install the
software according to the instructions provided.

net = googlenet;
2 The object net contains the DAGNetwork object. Use the analyzeNetwork function to display

an interactive visualization of the network architecture, to detect errors and issues in the
network, and to display detailed information about the network layers. The layer information
includes the sizes of layer activations and learnable parameters, the total number of learnable
parameters, and the sizes of state parameters of recurrent layers.

analyzeNetwork(net);
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3 The image that you want to classify must have the same size as the input size of the network. For
GoogLeNet, the size of the imageInputLayer is 224-by-224-by-3. The Classes property of the
output classificationLayer contains the names of the classes learned by the network. View
10 random class names out of the total of 1000.

classNames = net.Layers(end).Classes;
numClasses = numel(classNames);
disp(classNames(randperm(numClasses,10)))

    'speedboat'
    'window screen'
    'isopod'
    'wooden spoon'
    'lipstick'
    'drake'
    'hyena'
    'dumbbell'
    'strawberry'
    'custard apple'

Create GoogLeNet Model
1 Create a Simulink model and insert a MATLAB Function block from the User-Defined Functions

library.
2 Add an Image From File block from the Computer Vision Toolbox library and set the File

name parameter to peppers.png.
3 Add a Resize block from the Computer Vision Toolbox library to the model. Set the Specify

parameter of the Resize block to Number of output rows and columns and enter [224
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224] as the value for Number of output rows and columns. This bock resizes the input image
to that of the input layer of the network.

4 Double-click the MATLAB Function block. A default function signature appears in the MATLAB
Function Block Editor.

5 Define a function called googlenet_predict, which implements the prediction entry-point
function. The function header declares in as an argument to the googlenet_predict function,
with scores and indxTop as the return value.

function [scores,indxTop] = googlenet_predict(in) %#codegen

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('googlenet');
end

% pass in input   
predict_scores = predict(mynet,in);
[scores,indx] = sort(predict_scores, 'descend');
indxTop = indx(1:5);

A persistent object mynet loads the DAGNetwork object. At the first call to the entry-point
function, the persistent object is constructed and set up. On subsequent calls to the function, the
same object is reused to call predict on inputs, avoiding reconstructing and reloading the
network object.

You can also use the activations method to network activations for a specific layer. For
example, the following line of code returns the network activations for the layer specified in
layerIdx.

out = activations(mynet,in,layerIdx,'OutputAs','Channels');

You can also use the classify method to predict class labels for the image data in in using the
trained network mynet.

[out,scores] = classify(mynet,in);

For LSTM networks, you can use the predictAndUpdateState and resetState methods. For
usage notes and limitations of these method, see “Supported Functions” on page 1-6.

6 Open the block parameters of the MATLAB Function block. On the Code Generation tab, select
Reusable function for Function packaging.

7 Connect these blocks as shown in the diagram. Save the model as googlenetModel.
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Configure Model for GPU Acceleration
Model configuration parameters determine the acceleration method used during simulation.

1 Open the Configuration Parameters dialog box. Open the Solver pane. To compile your model for
acceleration and generate CUDA code, configure the model to use a fixed-step solver. This table
shows the solver configuration for this example.

Parameter Setting Effect on Generated Code
Type Fixed-step Maintains a constant (fixed)

step size, which is required
for code generation

Solver discrete (no
continuous states)

Applies a fixed-step
integration technique for
computing the state
derivative of the model

Fixed-step size auto Simulink chooses the step
size

2 Select the Simulation Target pane. Set the Language to C++.
3 Select GPU acceleration.

options specific to GPU Coder are now visible in the Simulation Target > GPU Acceleration
pane. For this example, you can use the default values for these GPU-specific parameters.
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4 On the Simulation Target pane, set the Target Library parameter in the Deep learning group
to cuDNN.

You can also select TensorRT to target TensorRT high performance inference libraries for
NVIDIA GPUs.

5 Click OK to save and close the Configuration Parameters dialog box.

You can use set_param to configure the model parameter programmatically in the MATLAB
command Window.

set_param('googlenetModel','GPUAcceleration','on');

Build GPU Accelerated Model
1 To build and simulate the GPU accelerated model, select Run on the Simulation tab or use the

MATLAB command:

out = sim('googlenetModel');

The software first checks to see if CUDA/C++ code was previously compiled for your model. If
code was created previously, the software runs the model. If code was not previously built, the
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software first generates and compiles the CUDA/C++ code, and then runs the model. The code
generation tool places the generated code in a subfolder of the working folder called slprj/
_slprj/googlenetModel.

2 Display the top five predicted labels and their associated probabilities as a histogram. Because
the network classifies images into so many object categories, and many categories are similar, it
is common to consider the top-five accuracy when evaluating networks. The network classifies
the image as a bell pepper with a high probability.

im = imread('peppers.png');
classNamesTop = classNames(out.yout{2}.Values.Data(:,:,1))

h = figure;
h.Position(3) = 2*h.Position(3);
ax1 = subplot(1,2,1);
ax2 = subplot(1,2,2);

image(ax1,im);
barh(ax2,out.yout{1}.Values.Data(1,5:-1:1,1))
xlabel(ax2,'Probability')
yticklabels(ax2,classNamesTop(5:-1:1))
ax2.YAxisLocation = 'right';
sgtitle('Top 5 predictions using GoogLeNet')

Configure the Model for Code Generation
The model configuration parameters provide many options for the code generation and build process.

1 Select the Code Generation pane. Set the System target file to grt.tlc.

You can also use the Embedded Coder target file ert.tlc or a custom system target file.

For GPU code generation, the custom target file must be based on grt.tlc or ert.tlc. For
information on developing a custom target file, see “Customize System Target Files” (Simulink
Coder).

2 Set the Language to C++.
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3 Select Generate GPU code.
4 Select Generate code only.
5 Select the Toolchain. For Linux platforms, select NVIDIA CUDA | gmake (64-bit Linux).

For Windows systems, select NVIDIA CUDA (w/Microsoft Visual C++ 20XX) | nmake
(64-bit windows).

When using a custom system target file, you must set the build controls for the toolchain
approach. To learn more about toolchain approach for custom targets, see “Support Toolchain
Approach with Custom Target” (Simulink Coder).

6 On the Code Generation > Report pane, select Create code generation report and Open
report automatically.

7 On the Code Generation > Interface pane, set the Target Library in the Deep learning
group to cuDNN.

You can also select TensorRT to target TensorRT high performance inference libraries for
NVIDIA GPUs.

8 When the Generate GPU code parameter is enabled, options specific to GPU Coder are visible
in the Code Generation > GPU Code pane. For this example, you can use the default values of
the GPU-specific parameters in Code Generation > GPU Code pane.

9 Click OK to save and close the Configuration Parameters dialog box.

You can also use set_param function to configure the model parameter programmatically in the
MATLAB Command Window.

set_param('googlenetModel','GenerateGPUCode','CUDA');
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Generate CUDA Code for the Model
1 In the Simulink Editor, open the Simulink Coder app.
2 Generate code.

Messages appear in the Diagnostics Viewer. The code generator produces CUDA source and header
files, and an HTML code generation report. The code generator places the files in a build folder, a
subfolder named googlenetModel_grt_rtw under your current working folder.

Limitations
• GPU code generation for MATLAB Function blocks in Stateflow charts is not supported.
• When GPU acceleration is enabled, the code generator does not support Import custom code

for importing custom authored CUDA source files (*.cu). Instead, use coder.ceval inside the
MATLAB Function block.

• The MATLAB Function block does not support all the data types from the MATLAB language. For
supported data types, refer to the block documentation.

• For GPU code generation, the custom target file must be based on grt.tlc or ert.tlc.
• For deploying the generated code, it is recommended to use the Generate an example main

program option to generate the ert_main.cu module. This option requires the Embedded Coder
license.

You can also use the rt_cppclass_main.cpp static main module provided by MathWorks®.
However, the static main file must be modified such that the models class constructor points to the
deep learning object. For example,
static googlenetModelModelClass::DeepLearning_googlenetModel_T
  googlenetModel_DeepLearning;
static googlenetModelModelClass googlenetModel_Obj{ &googlenetModel_DeepLearning};

See Also
Functions
open_system | load_system | save_system | close_system | bdclose | get_param |
set_param | sim | slbuild

More About
• “Simulation Acceleration by Using GPU Coder” on page 3-2
• “Code Generation from Simulink Models with GPU Coder” on page 3-8
• “GPU Code Generation for Blocks from the Deep Neural Networks Library” on page 3-22
• “Targeting NVIDIA Embedded Boards” on page 3-30
• “Numerical Equivalence Testing” on page 3-32
• “Parameter Tuning and Signal Monitoring by Using External Mode” on page 3-38
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GPU Code Generation for Blocks from the Deep Neural
Networks Library

With GPU Coder, you can generate optimized code for Simulink models containing a variety of trained
deep learning networks. You can implement deep learning functionality in Simulink by using MATLAB
Function blocks or by using blocks from the Deep Neural Networks from the Deep Learning
Toolbox or the Computer Vision Toolbox > Analysis and Enhancement library from the
Computer Vision Toolbox.

GPU Coder supports the following deep learning blocks:

• Predict block — Predict responses using the trained network specified through the block
parameter.

For more information about working with the Predict block, see “Lane and Vehicle Detection in
Simulink Using Deep Learning” (Deep Learning Toolbox).

• Image Classifier block — Classify data using a trained deep learning neural network specified
through the block parameter.

For more information about working with the Image Classifier block, see “Classify ECG Signals in
Simulink Using Deep Learning” (Deep Learning Toolbox).

• Stateful Classify block — Predicts class labels for the data at the input by using the trained
recurrent neural network specified through the block parameter.

• Stateful Predict block — Predicts responses for the data at the input by using the trained
recurrent neural network specified through the block parameter.

• Deep Learning Object Detector block — Predicts bounding boxes, class labels, and scores for the
input image by using the trained object detector specified through the block parameter.

For more information about working with the Deep Learning Object Detector block, see “Lane and
Vehicle Detection in Simulink Using Deep Learning” (Deep Learning Toolbox).

These library blocks enable loading of a pretrained network into the Simulink model from a MAT-file
or from a MATLAB function.

You can configure the code generator to take advantage of the NVIDIA CUDA deep neural network
library (cuDNN) and TensorRT high performance inference libraries for NVIDIA GPUs. The generated
code implements the deep convolutional neural network (CNN) by using the architecture, the layers,
and parameters that you specify in the network object.

Example: Classify Images by Using GoogLeNet
GoogLeNet has been trained on over a million images and can classify images into 1000 object
categories (such as keyboard, coffee mug, pencil, and animals). The network takes an image as input,
and then outputs a label for the object in the image with the probabilities for each of the object
categories. This example shows how to perform simulation and generate CUDA code for the
pretrained googlenet deep convolutional neural network and classify an image. The pretrained
networks are available as support packages from the Deep Learning Toolbox.

1 Load the pretrained GoogLeNet network.

net = googlenet;
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2 The object net contains the DAGNetwork object. Use the analyzeNetwork function to display
an interactive visualization of the network architecture, to detect errors and issues in the
network, and to display detailed information about the network layers. The layer information
includes the sizes of layer activations and learnable parameters, the total number of learnable
parameters, and the sizes of state parameters of recurrent layers.

analyzeNetwork(net);

3 The image that you want to classify must have the same size as the input size of the network. For
GoogLeNet, the size of the imageInputLayer is 224-by-224-by-3. The Classes property of the
output classificationLayer contains the names of the classes learned by the network. View
10 random class names out of the total of 1000.

classNames = net.Layers(end).Classes;
numClasses = numel(classNames);
disp(classNames(randperm(numClasses,10)))

    'speedboat'
    'window screen'
    'isopod'
    'wooden spoon'
    'lipstick'
    'drake'
    'hyena'
    'dumbbell'
    'strawberry'
    'custard apple'
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Create GoogLeNet Model
1 Create a Simulink model and insert a Predict block from the Deep Neural Networks library.
2 Add an Image From File block from the Computer Vision Toolbox library and set the File

name parameter to peppers.png. Add a Resize block from the Computer Vision Toolbox
library to the model. Set the Specify parameter of the Resize block to Number of output
rows and columns and enter [224 224] as the value for Number of output rows and
columns. The resize block resizes the input image to that of the input layer of the network. Add
a To Workspace to the model and change the variable name to yPred.

3 Open the Block Parameters (subsystem) of the Predict block. Select Network from MATLAB
function for Network and googlenet for MATLAB function.

4 Connect these blocks as shown in the diagram. Save the model as googlenetModel.slx.

Configure the Model for GPU Acceleration
Model configuration parameters determine the acceleration method used during simulation.

1 Open the Configuration Parameters dialog box. Open the Solver pane. To compile your model for
acceleration and generate CUDA code, configure the model to use a fixed-step solver. This table
shows the solver configuration for this example.

Parameter Setting Effect on Generated Code
Type Fixed-step Maintains a constant (fixed)

step size, which is required
for code generation

Solver discrete (no
continuous states)

Applies a fixed-step
integration technique for
computing the state
derivative of the model

Fixed-step size auto Simulink chooses the step
size
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2 Select the Simulation Target pane. Set the Language to C++.
3 Select GPU acceleration. Options specific to GPU Coder are now visible in the Simulation

Target > GPU Acceleration pane. For this example, you can use the default values of these
parameters.

4 On the Simulation Target pane, set the Target Library in the Deep learning group to cuDNN.
You can also select TensorRT.

5 Click OK to save and close the Configuration Parameters dialog box.
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You can use set_param to configure the model parameter programmatically in the MATLAB
Command Window.

set_param('googlenetModel','GPUAcceleration','on');

Build GPU Accelerated Model
1 To build and simulate the GPU accelerated model, select Run on the Simulation tab or use the

command:

out = sim('googlenetModel');

The software first checks to see if CUDA/C++ code was previously compiled for your model. If
code was created previously, the software runs the model. If code was not previously built, the
software first generates and compiles the CUDA/C++ code, and then runs the model. The code
generation tool places the generated code in a subfolder of the working folder called slprj/
_slprj/googlenetModel.

2 Display the top five predicted labels and their associated probabilities as a histogram. Because
the network classifies images into so many object categories, and many categories are similar, it
is common to consider the top-five accuracy when evaluating networks. The network classifies
the image as a bell pepper with a high probability.

im = imread('peppers.png');
predict_scores = out.yPred.Data(:,:,1);
[scores,indx] = sort(predict_scores,'descend');
topScores = scores(1:5);
classNamesTop = classNames(indx(1:5))

h = figure;
h.Position(3) = 2*h.Position(3);
ax1 = subplot(1,2,1);
ax2 = subplot(1,2,2);

image(ax1,im);
barh(ax2,topScores(1,5:-1:1,1))
xlabel(ax2,'Probability')
yticklabels(ax2,classNamesTop(5:-1:1))
ax2.YAxisLocation = 'right';
sgtitle('Top 5 predictions using GoogLeNet')
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Configure Model for Code Generation
The model configuration parameters provide many options for the code generation and build process.

1 In Configuration Parameters dialog box, select Code Generation pane. Set the System target
file to grt.tlc.

You can also use the Embedded Coder target file ert.tlc or a custom system target file.

For GPU code generation, the custom target file must be based on grt.tlc or ert.tlc. For
information on developing a custom target file, see “Customize System Target Files” (Simulink
Coder).

2 Set the Language to C++.
3 Select Generate GPU code.
4 Select Generate code only.
5 Select the Toolchain. For Linux platforms, select NVIDIA CUDA | gmake (64-bit Linux).

For Windows systems, select NVIDIA CUDA (w/Microsoft Visual C++ 20XX) | nmake
(64-bit windows).

When using a custom system target file, you must set the build controls for the toolchain
approach. To learn more about toolchain approach for custom targets, see “Support Toolchain
Approach with Custom Target” (Simulink Coder).

6 On the Code Generation > Report pane, select Create code generation report and Open
report automatically.

7 On the Code Generation > Interface pane, set the Target Library in the Deep learning
group to cuDNN. You can also select TensorRT.

8 Options specific to GPU Coder are in the Code Generation > GPU Code pane. For this example,
you can use the default values of the GPU-specific parameters in Code Generation > GPU Code
pane.
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9 Click OK to save and close the Configuration Parameters dialog box.

You can also use set_param to configure the model parameter programmatically in the MATLAB
Command Window.

set_param('googlenetModel','GenerateGPUCode','CUDA');

Generate CUDA Code for the Model
1 In the Simulink Editor, open the Simulink Coder app.
2 Generate code.

Messages appear in the Diagnostics Viewer. The code generator produces CUDA source and header
files, and an HTML code generation report. The code generator places the files in a build folder, a
subfolder named googlenetModel_grt_rtw under your current working folder.

Limitations
• GPU code generation for MATLAB Function blocks in Stateflow charts is not supported.
• The code generator does not support all the data types from the MATLAB language. For supported

data types, refer to the block documentation.
• For GPU code generation, the custom target file must be based on grt.tlc or ert.tlc.
• For deploying the generated code, it is recommended to use the Generate an example main

program option to generate the ert_main.cu module. This option requires the Embedded Coder
license.
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You can also use the rt_cppclass_main.cpp static main module provided by MathWorks.
However, the static main file must be modified such that the models class constructor points to the
deep learning object. For example,
static googlenetModelModelClass::DeepLearning_googlenetModel_T
  googlenetModel_DeepLearning;
static googlenetModelModelClass googlenetModel_Obj{ &googlenetModel_DeepLearning};

See Also
Functions
open_system | load_system | save_system | close_system | bdclose | get_param |
set_param | sim | slbuild

More About
• “Simulation Acceleration by Using GPU Coder” on page 3-2
• “Code Generation from Simulink Models with GPU Coder” on page 3-8
• “GPU Code Generation for Deep Learning Networks Using MATLAB Function Block” on page 3-

14
• “Targeting NVIDIA Embedded Boards” on page 3-30
• “Numerical Equivalence Testing” on page 3-32
• “Parameter Tuning and Signal Monitoring by Using External Mode” on page 3-38
• “Code Generation for a Deep Learning Simulink Model that Performs Lane and Vehicle

Detection” on page 3-60
• “Code Generation for a Deep Learning Simulink Model to Classify ECG Signals” on page 3-53
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Targeting NVIDIA Embedded Boards
With the MATLAB Coder Support Package for NVIDIA Jetson® and NVIDIA DRIVE Platforms, you can
automate the deployment of Simulink models on embedded NVIDIA boards by building and deploying
the generated code on the target hardware board. You can also remotely communicate with the
target and control the peripheral devices for prototyping.

For an example of deployment to NVIDIA targets, see “Deploy and Classify Webcam Images on
NVIDIA Jetson TX2 Platform from Simulink” (MATLAB Coder Support Package for NVIDIA Jetson and
NVIDIA DRIVE Platforms).

Note Starting in R2021a, the MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA
DRIVE® Platforms is named MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE
Platforms. To use this support package in R2021a, you must have the MATLAB Coder product.

Configure Model for Deployment
The model configuration parameters provide many options for the code generation and build process.

1 Open the Configuration Parameters dialog box. Select the Hardware Implementation pane. Set
the Hardware board to NVIDIA Jetson. You can also use NVIDIA Drive.

2 Under Target hardware resources group, set the Device Address, Username, and Password
of your target hardware. The device address is the IP address or host name of the target
platform.

3 Click OK to save and close the Configuration Parameters dialog box.

You can also use set_param to configure the model parameter programmatically in the MATLAB
Command Window.

set_param(<modelname>,'HardwareBoard','NVIDIA Jetson');

Generate CUDA Code for the Model
1 Once the hardware parameters are set, in the Simulink Editor, open the Hardware tab.
2 Select Build, Deploy & Start to generate and deploy the code on the hardware.

See Also
Functions
open_system | load_system | save_system | close_system | bdclose | get_param |
set_param | sim | slbuild
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More About
• “Deploy and Classify Webcam Images on NVIDIA Jetson TX2 Platform from Simulink” (MATLAB

Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms)
• “Simulation Acceleration by Using GPU Coder” on page 3-2
• “Code Generation from Simulink Models with GPU Coder” on page 3-8
• “GPU Code Generation for Deep Learning Networks Using MATLAB Function Block” on page 3-

14
• “GPU Code Generation for Blocks from the Deep Neural Networks Library” on page 3-22
• “Numerical Equivalence Testing” on page 3-32
• “Parameter Tuning and Signal Monitoring by Using External Mode” on page 3-38
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Numerical Equivalence Testing
Test numerical equivalence between model components and production code that you generate from
the components by using GPU acceleration and processor-in-the-loop (PIL) simulations.

With a GPU acceleration simulation, you test source code on your development computer. With a PIL
simulation, you test the compiled object code that you intend to deploy on a target hardware by
running the object code on real target hardware. To determine whether model components and
generated code are numerically equivalent, compare GPU acceleration and PIL results to normal
mode results.

Target Connectivity Configuration for PIL
Before you can run PIL simulations, you must configure target connectivity. The target connectivity
configuration enables the PIL simulation to:

• Build the target application.
• Download, start, and stop the application on the target.
• Support communication between Simulink and the target.

To produce a target connectivity configuration for hardware platforms such as NVIDIA DRIVE and
Jetson, install the MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms.

Note Starting in R2021a, the MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE
Platforms is named MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE
Platforms. To use this support package in R2021a, you must have the MATLAB Coder product.

Target Board Requirements

• NVIDIA DRIVE or Jetson embedded platform.
• Ethernet crossover cable to connect the target board and host PC (if you cannot connect the

target board to a local network).
• NVIDIA CUDA Toolkit installed on the board.
• Environment variables on the target for the compilers and libraries. For information on the

supported versions of the compilers, libraries, and their setup, see “Install and Setup
Prerequisites for NVIDIA Boards” (MATLAB Coder Support Package for NVIDIA Jetson and
NVIDIA DRIVE Platforms).

Create Live Hardware Connection Object

The support package software uses an SSH connection over TCP/IP to execute commands while
building and running the generated CUDA code on the DRIVE or Jetson platforms. Connect the target
platform to the same network as the host computer or use an Ethernet crossover cable to connect the
board directly to the host computer. For how to set up and configure your board, see NVIDIA
documentation.

To communicate with the NVIDIA hardware, create a live hardware connection object by using the
jetson or drive function. To create a live hardware connection object by using the function, provide
the host name or IP address, user name, and password of the target board. For example, to create
live object for Jetson hardware:
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hwobj = jetson('192.168.1.15','ubuntu','ubuntu');

The software performs a check of the hardware, compiler tools, libraries, IO server installation, and
gathers peripheral information on target. This information is displayed in the Command Window.

Checking for CUDA availability on the Target...
Checking for NVCC in the target system path...
Checking for CUDNN library availability on the Target...
Checking for TensorRT library availability on the Target...
Checking for Prerequisite libraries is now complete.
Fetching hardware details...
Fetching hardware details is now complete. Displaying details.
 Board name        : NVIDIA Jetson TX2
 CUDA Version      : 9.0
 cuDNN Version     : 7.0
 TensorRT Version  : 3.0
 Available Webcams : UVC Camera (046d:0809)
 Available GPUs    : NVIDIA Tegra X2

Alternatively, to create live object for DRIVE hardware:

hwobj = drive('92.168.1.16','nvidia','nvidia');

Note If there is a connection failure, a diagnostics error message is reported on the MATLAB
command window. If the connection has failed, the most likely cause is incorrect IP address or host
name.

Example: The Mandelbrot Set
Description

The Mandelbrot set is the region in the complex plane consisting of the values z0 for which the
trajectories defined by this equation remain bounded at k→∞.

zk + 1 = zk
2 + z0, k = 0, 1, …

The overall geometry of the Mandelbrot set is shown in the figure. This view does not have the
resolution to show the richly detailed structure of the fringe just outside the boundary of the set. At
increasing magnifications, the Mandelbrot set exhibits an elaborate boundary that reveals
progressively finer recursive detail.
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Algorithm

For this tutorial, pick a set of limits that specify a highly zoomed part of the Mandelbrot set in the
valley between the main cardioid and the p/q bulb to its left. A 1000-by-1000 grid of real parts (x) and
imaginary parts (y) is created between these two limits. The Mandelbrot algorithm is then iterated at
each grid location. An iteration number of 500 renders the image in full resolution.

maxIterations = 500;
gridSize = 1000;
xlim = [-0.748766713922161,-0.748766707771757];
ylim = [0.123640844894862,0.123640851045266];

This tutorial uses an implementation of the Mandelbrot set by using standard MATLAB commands
running on the CPU. This calculation is vectorized such that every location is updated simultaneously.

GPU Acceleration or PIL Simulation with a Top Model
Test the generated model code by running a top-model PIL simulation. With this approach:

• You test code generated from the top model, which uses the standalone code interface.
• You configure the model to load test vectors or stimulus inputs from the MATLAB workspace.
• You can easily switch the top model between the normal, GPU acceleration, and PIL simulation

modes.

Create Mandelbrot Top Model

1 Create a Simulink model and insert a MATLAB Function block from the User-Defined Functions
library.

2 Double-click the MATLAB Function block. A default function signature appears in the MATLAB
Function Block Editor.

3 Define a function called mandelbrot_count, which implements the Mandelbrot algorithm. The
function header declares maxIterations, xGrid, and yGrid as an argument to the
mandelbrot_count function, with count as the return value.

function count = mandelbrot_count(maxIterations, xGrid, yGrid)
% mandelbrot computation

z0 = xGrid + 1i*yGrid;
count = ones(size(z0));

% Map computation to GPU
coder.gpu.kernelfun;

z = z0;
for n = 0:maxIterations
    z = z.*z + z0;
    inside = abs(z)<=2;
    count = count + inside;
end
count = log(count);

4 Open the block parameters for the MATLAB Function block. On the Code Generation tab, select
Reusable function for Function packaging parameter.
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If the Function packaging parameter is set to any other value, CUDA kernels may not get
generated.

5 Add Inport blocks and Outport block from the Sources and Sinks library.
6 Connect these blocks as shown in the diagram. Save the model as mandelbrot_top.slx.

Configure the Model for GPU Acceleration

To focus on numerical equivalence testing, turn off:

• Model coverage
• Code coverage
• Execution time profiling

model = 'mandelbrot_top';
close_system(model,0);
open_system(model)
set_param(gcs, 'RecordCoverage','off');
coverageSettings = get_param(model, 'CodeCoverageSettings');
coverageSettings.CoverageTool='None';
set_param(model, 'CodeCoverageSettings',coverageSettings);
set_param(model, 'CodeExecutionProfiling','off');

Configure the input stimulus data. The following lines of code generate a 1000-by-1000 grid of real
parts (x) and imaginary parts (y) between the limits specified by xlim and ylim.

gridSize = 1000;
xlim = [-0.748766713922161, -0.748766707771757];
ylim = [ 0.123640844894862,  0.123640851045266];
x = linspace( xlim(1), xlim(2), gridSize );
y = linspace( ylim(1), ylim(2), gridSize );
[xG, yG] = meshgrid( x, y );
maxIterations = timeseries(500,0);
xGrid = timeseries(xG,0);
yGrid = timeseries(yG,0);

Configure logging options in the model.

set_param(model, 'LoadExternalInput','on');
set_param(model, 'ExternalInput','maxIterations, xGrid, yGrid');
set_param(model, 'SignalLogging', 'on');
set_param(model, 'SignalLoggingName', 'logsOut');
set_param(model, 'SaveOutput','on')

Run Normal and PIL Simulations
Run a normal mode simulation.

set_param(model,'SimulationMode','normal')
set_param(model,'GPUAcceleration','on');
sim_output = sim(model,10);
count_normal = sim_output.yout{1}.Values.Data(:,:,1);

 Numerical Equivalence Testing

3-35



Run a top-model PIL simulation.

set_param(model,'SimulationMode','Processor-in-the-Loop (PIL)')
sim_output = sim(model,10);
count_pil = sim_output.yout{1}.Values.Data(:,:,1);

### Target device has no native communication support.
Checking connectivity configuration registrations...
### Starting build procedure for: mandelbrot_top
### Generating code and artifacts to 'Model specific' folder structure
### Generating code into build folder: 
/mathworks/examples/sil_pil/mandelbrot_top_ert_rtw
### Generated code for 'mandelbrot_top' is up to date because no structural, 
parameter or code replacement library changes were found.
### Evaluating PostCodeGenCommand specified in the model
### Using toolchain: NVCC for NVIDIA Embedded Processors
### '/mathworks/examples/sil_pil/mandelbrot_top_ert_rtw/mandelbrot_top.mk' is 
up to date
### Building 'mandelbrot_top': make  -f mandelbrot_top.mk buildobj
### Successful completion of build procedure for: mandelbrot_top

Build Summary

Top model targets built:

Model                Action         Rebuild Reason                           
=============================================================================
mandelbrot_top  Code compiled  Compilation artifacts were out of date.  

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 22.94s
### Target device has no native communication support. Checking connectivity 
configuration registrations...
### Connectivity configuration for component "mandelbrot_top": NVIDIA Jetson ###
PIL execution is using Port 17725.
PIL execution is using 30 Sec(s) for receive time-out.
### Preparing to start PIL simulation ...
### Using toolchain: NVCC for NVIDIA Embedded Processors
### '/mathworks/examples/sil_pil/mandelbrot_top_ert_rtw/pil/mandelbrot_top.mk' is 
up to date
### Building 'mandelbrot_top': make  -f mandelbrot_top.mk all
### Starting application: 'mandelbrot_top_ert_rtw/pil/mandelbrot_top.elf'
### Launching application mandelbrot_top.elf...
PIL execution terminated on target.

Unless up-to-date code for this model exists, new code is generated and compiled. The generated
code runs as a separate process on your computer.

Plot and compare the results of the normal and PIL simulations. Observe that the results match.

figure();
subplot(1,2,1)
imagesc(x, y, count_normal);
colormap([jet();flipud( jet() );0 0 0]);
title('Mandelbrot Set Normal Simulation');
axis off;

subplot(1,2,2)
imagesc(x, y, count_pil);
colormap([jet();flipud( jet() );0 0 0]);
title('Mandelbrot Set PIL');
axis off;
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Clean up.

close_system(model,0);
if ishandle(fig1), close(fig1), end
clear fig1
simResults = {'count_sil','count_normal','model'};
save([model '_results'],simResults{:});
clear(simResults{:},'simResults')

Limitations
MAT-file logging is not supported for Processor-in-the-loop (PIL) simulation with GPU Coder.

See Also
Functions
open_system | load_system | save_system | close_system | bdclose | get_param |
set_param | sim | slbuild

More About
• “Simulation Acceleration by Using GPU Coder” on page 3-2
• “Code Generation from Simulink Models with GPU Coder” on page 3-8
• “GPU Code Generation for Deep Learning Networks Using MATLAB Function Block” on page 3-
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Parameter Tuning and Signal Monitoring by Using External
Mode

You can use external mode simulations for rapid prototyping. An external mode simulation establishes
a communication channel between Simulink on your development computer (host) and the target
hardware that runs the executable file created by the code generation and build process.

Through the communication channel, you can:

• Modify or tune block parameters in real time. When you change parameters in your model,
Simulink downloads the new values to the executing target application.

• Monitor and save signal data from the executing target application.

The low-level transport layer of the channel handles the transmission of messages. Simulink and the
generated model code are independent of this layer. The transport layer and its interface code are
isolated in separate modules that format, transmit, and receive messages and data packets.
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Set up and run an external mode simulation that uses a TCP/IP or serial (RS-232) communication
channel.

1 Create and configure a simple model.
2 Build the target executable file.
3 Run the target application.
4 Tune parameters.

Example: The Mandelbrot Set
Description

The Mandelbrot set is the region in the complex plane consisting of the values z0 for which the
trajectories defined by this equation remain bounded at k→∞.

zk + 1 = zk
2 + z0, k = 0, 1, …

The overall geometry of the Mandelbrot set is shown in the figure. This view does not have the
resolution to show the richly detailed structure of the fringe just outside the boundary of the set. At
increasing magnifications, the Mandelbrot set exhibits an elaborate boundary that reveals
progressively finer recursive detail.

Algorithm

For this tutorial, pick a set of limits that specify a highly zoomed part of the Mandelbrot set in the
valley between the main cardioid and the p/q bulb to its left. A 1000-by-1000 grid of real parts (x) and
imaginary parts (y) is created between these two limits. The Mandelbrot algorithm is then iterated at
each grid location. An iteration number of 500 renders the image in full resolution.

maxIterations = 500;
gridSize = 1000;
xlim = [-0.748766713922161,-0.748766707771757];
ylim = [0.123640844894862,0.123640851045266];

This tutorial uses an implementation of the Mandelbrot set by using standard MATLAB commands
running on the CPU. This calculation is vectorized such that every location is updated simultaneously.
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Create Mandelbrot Model
1 Create a Simulink model and insert a MATLAB Function block from the User-Defined Functions

library.
2 Double-click the MATLAB Function block. A default function signature appears in the MATLAB

Function Block Editor.
3 Define a function called mandelbrot_count, which implements the Mandelbrot algorithm. The

function header declares maxIterations, xGrid, and yGrid as an argument to the
mandelbrot_count function, with count as the return value.

function count = mandelbrot_count(maxIterations, xGrid, yGrid)
% mandelbrot computation

z0 = xGrid + 1i*yGrid;
count = ones(size(z0));

% Map computation to GPU
coder.gpu.kernelfun;

z = z0;
for n = 0:maxIterations
    z = z.*z + z0;
    inside = abs(z)<=2;
    count = count + inside;
end
count = log(count);

4 Open the block parameters for the MATLAB Function block. On the Code Generation tab, select
Reusable function for Function packaging parameter.

If the Function packaging parameter is set to any other value, CUDA kernels may not get
generated.

5 Add Inport blocks and Outport block from the Sources and Sinks library.
6 Connect these blocks as shown in the diagram. Save the model as mandelbrot_top.slx.

Build Target Executable
Set up the model and code generation parameters required for an external mode target application.
Then, generate code and build the target application.

1 From the Apps tab on the Simulink toolstrip, in the Setup to Run on Hardware section, click
Run on Hardware Board.

2 In the Hardware Board section, from the Hardware Board list, select NVIDIA Jetson.
3 In the Prepare section, click Hardware Settings. The Configuration Parameters dialog box

opens, displaying Hardware Implementation settings that are determined by the selected
board.

4 On the Solver pane:
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a In the Type field, select Fixed-step.
b In the Solver field, select discrete (no continuous states).
c Click Solver details. In the Fixed-step size field, specify 0.1. (Otherwise, when you

generate code, the GPU Coder build process produces a warning and supplies a value.)
d Click Apply.

5 On the Data Import/Export pane, clear the Time and Output check boxes. In this example,
data is not logged to the workspace or to a MAT-file. Click Apply.

6 On the Code Generation > Optimization pane, make sure that Default parameter behavior
is set to Tunable. If you make a change, click Apply.

7 On the Code Generation > Interface pane, in the Data exchange interface section, select
External mode.

8 In the External mode configuration section, make sure that you select the default value tcpip
for the Transport layer parameter.

The MEX-file name specifies the name of a MEX-file that implements host-target
communication. The default for TCP/IP is ext_comm, a MEX-file provided with the Simulink
Coder software.

The MEX-file arguments field enables you specify arguments, such as a TCP/IP server port
number, to be passed to the external interface program. These arguments are specific to the
external interface that you are using.

This tutorial uses the default arguments. Leave the MEX-file arguments field blank.

The Static memory allocation check box controls how memory is allocated for external mode
communication buffers in the target. For this tutorial, do not select the check box.

9 Click Apply to save the external mode settings.
10 Save the model.
11 Select the Code Generation pane. Make sure that Generate code only is cleared.
12 To generate code and create the target application, in the model window, press Ctrl+B. Or, on

the Hardware tab, in the Run on Hardware section, click Monitor & Tune. Then, under Step
By Step Commands, click Build for Monitoring.

The software creates the mandelbrot_top executable file in your working folder.

Run Target Application
Run the mandelbrot_top target executable and use Simulink as an interactive front end to the
running target application. The executable file is in your working folder. Run the target application
and establish communication between Simulink and the target.
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To run the target application:

1 On the Hardware tab, in the Run on Hardware section:

a In the Stop Time field, specify inf, which makes the model run until the target application
receives a stop message from Simulink

b Click Monitor & Tune. Then, under Step By Step Commands, click Deploy.

The target application begins execution, and enters a wait state.
2 On the Hardware tab, in the Run on Hardware section, click Monitor & Tune. Then, under

Step By Step Commands, click Connect. When Simulink and the target are connected, the
Connect button changes to Disconnect.

3
In the Run on Hardware section, click , which starts execution of the generated model
code.

You have established communication between Simulink and the running target application.

Note When performing external mode simulation on Simulink models containing deep learning
networks, a timeout error may occur during model initialization on the target. This timeout may be
because the initialization time for the executable exceeds the default maximum loading time of 300
seconds. You can increase the timeout by using the NVIDIA_XCP_EXTMODE_INIT_TIME environment
variable. For example, in the MATLAB Command Window, enter:

setenv('NVIDIA_XCP_EXTMODE_INIT_TIME','500');

Stop Target Application
To simultaneously disconnect Simulink from the host/target communication and end execution of the
target application, on the Hardware tab, in the Run on Hardware section, click Stop.

See Also
Functions
open_system | load_system | save_system | close_system | bdclose | get_param |
set_param | sim | slbuild
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GPU Code Generation for Lane Detection in Simulink

This example shows how to generate CUDA® code for a Simulink® model that can detect and output
lane marker boundaries on an image. This example takes RGB image as an input and uses the
imresize, rgb2gray, ordfilt2 (Image Processing Toolbox), hough (Image Processing Toolbox),
houghpeaks (Image Processing Toolbox), and houghlines (Image Processing Toolbox) functions
that are part of Image Processing Toolbox™ to detect lane markings. This example closely follows
“Lane Detection on the GPU by Using the houghlines Function” on page 2-100.

This example illustrates the following concepts:

• Model a lane detection application in Simulink by using image processing functions.
• Configure the model for GPU code generation.
• Generate a CUDA executable for the Simulink model.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('host');
envCfg.BasicCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Lane Detection using houghlines Simulink Model

The Simulink model for lane detection is shown.

open_system('lane_detection');
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The Lane Detection subsystem contains a MATLAB Function block that takes an intensity image
as input and provides detected lanes as output. This function is based on the lane detection algorithm
implementation using houghlines as described in “Lane Detection on the GPU by Using the
houghlines Function” on page 2-100 example. When the model runs, the Visualization block
displays the lane detected output image.

Run the Simulation

Open Configuration Parameters dialog box.

In Simulation Target pane, select GPU acceleration.

Run the simulation in Normal mode.

set_param('lane_detection', 'SimulationMode', 'Normal');
sim('lane_detection');
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Generate and Build the Simulink Model

In Code Generation pane, select the Language as C++ and enable Generate GPU code.

Open Simulation Target pane. In the Advanced parameters, enable Dynamic memory allocation
threshold in MATLAB functions. For more information, see “Dynamic memory allocation in
MATLAB functions” (Simulink)
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Open Code Generation > GPU Code pane. In the subcategory Libraries, enable cuBLAS,
cuSOLVER and cuFFT.

Generate and build the Simulink model on the host GPU by using the slbuild command. The code
generator places the files in a build folder, a subfolder named lane_detection_ert_rtw under
your current working folder.

status = evalc("slbuild('lane_detection')");

Cleanup

Close the Simulink model.
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close_system('lane_detection');

See Also
Functions
open_system | load_system | save_system | close_system | bdclose | get_param |
set_param | sim | slbuild

More About
• “Simulation Acceleration by Using GPU Coder” on page 3-2
• “Code Generation from Simulink Models with GPU Coder” on page 3-8
• “GPU Code Generation for Deep Learning Networks Using MATLAB Function Block” on page 3-
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• “Targeting NVIDIA Embedded Boards” on page 3-30
• “Numerical Equivalence Testing” on page 3-32
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GPU Code Generation for a Fog Rectification Simulink Model

This example demonstrates how to generate CUDA® code from the Simulink® model that takes a
foggy image as input and produces a defogged image as output. This example is a typical
implementation of fog rectification algorithm. The example uses conv2, im2gray, and imhist
(Image Processing Toolbox) functions. This example closely follows “Fog Rectification” on page 2-80
example. This example illustrates the following concepts:

• Verification of GPU Environment.
• Model fog rectification application in Simulink by using image processing functions.
• Configure the model for GPU code generation.
• Generate a CUDA executable for the Simulink model.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('host');
envCfg.BasicCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Fog Rectification Simulink Model

The Simulink model for fog rectification consists of Fog Rectification subsystem that contains a
MATLAB Function block which takes a foggy image as input and returns a defogged image as
output. It uses fog_rectification algorithm described in “Fog Rectification” on page 2-80
example. When the model runs, the Visualization block displays the foggy input image and
defogged output image.

mdl = 'fog_rectification_model';
open_system(mdl);
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Configure Model for GPU Acceleration

Model configuration parameters determine the acceleration method used during simulation.

set_param(mdl,'Solver','FixedStepAuto');
set_param(mdl,'GPUAcceleration','on');
set_param(mdl, 'SimulationMode','Normal');

Build GPU Accelerated Model

To build and simulate the GPU accelerated model, select Run on the Simulation tab or use the
following MATLAB command:

out = sim(mdl);
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Configure Model for Code Generation

Set the following parameters for code generation.

set_param(mdl,'TargetLang','C++');
set_param(mdl,'GenerateGPUCode','CUDA');
set_param(mdl,'GPUcuBLAS','on');
set_param(mdl,'GPUcuSOLVER','on');
set_param(mdl,'GPUcuFFT','on');
set_param(mdl,'ProdLongLongMode','on');

Generate CUDA Code for the Model

Generate and build the Simulink model on the host GPU by using the slbuild command. The code
generator places the files in a build folder, a subfolder named
fog_rectification_model_ert_rtw under your current working folder.

status = evalc("slbuild('fog_rectification_model')");

Cleanup

Close the Simulink model.
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close_system('fog_rectification_model');

See Also
Functions
open_system | load_system | save_system | close_system | bdclose | get_param |
set_param | sim | slbuild
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• “Simulation Acceleration by Using GPU Coder” on page 3-2
• “Code Generation from Simulink Models with GPU Coder” on page 3-8
• “GPU Code Generation for Deep Learning Networks Using MATLAB Function Block” on page 3-

14
• “Targeting NVIDIA Embedded Boards” on page 3-30
• “Numerical Equivalence Testing” on page 3-32
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Code Generation for a Deep Learning Simulink Model to
Classify ECG Signals

This example demonstrates how you can use powerful signal processing techniques and
Convolutional Neural Networks together to classify ECG signals. We will also showcase how CUDA®
code can be generated from the Simulink® model. This example uses the pretrained CNN network
from the Classify Time Series Using Wavelet Analysis and Deep Learning example of the Wavelet
Toolbox™ to classify ECG signals based on images from the CWT of the time series data. For
information on training, see “Classify Time Series Using Wavelet Analysis and Deep Learning”
(Wavelet Toolbox).

For a video demonstration on how to perform software-in-the-loop (SIL), processor-in-the-loop (PIL)
simulation, and deploying this example to NVIDIA Jetson® board, see https://www.mathworks.com/
videos/deep-learning-in-simulink-for-nvidia-gpus-classification-of-ecg-signals-1621401016961.html.

This example illustrates the following concepts:

• Model the classification application in Simulink. Use MATLAB Function blocks to perform
preprocessing and wavelet transforms of the ECG data. Use the Image Classifier block from
the Deep Learning Toolbox™ for loading the pretrained network and performing the classification
of the ECG data.

• Configure the model for code generation.
• Generate a CUDA executable for the Simulink model.

Third-Party Prerequisites

• CUDA enabled NVIDIA GPU.
• NVIDIA CUDA toolkit and driver.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

ECG Data Description

This example uses ECG data from PhysioNet database. It contains data from three groups of people:

1 Persons with cardiac arrhythmia (ARR)
2 Persons with congestive heart failure (CHF)
3 Persons with normal sinus rhythms (NSR)
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It includes 96 recordings from persons with ARR, 30 recordings from persons with CHF, and 36
recordings from persons with NSR. The ecg_signals MAT-file contains the test ECG data in time
series format. The image classifier in this example distinguishes between ARR, CHF, and NSR.

Algorithmic Workflow

The block diagram for the algorithmic workflow of the Simulink model is shown.

ECG Deep Learning Simulink Model

The Simulink model for classifying the ECG signals is shown. When the model runs, the Video
Viewer block displays the classified ECG signal.

open_system('ecg_dl_cwt');
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ECG Preprocessing Subsystem

The ECG Preprocessing subsystem contains a MATLAB Function block that performs CWT to
obtain scalogram of the ECG signal and then processes the scalogram to obtain an image and an
Image Classifier block that loads the pretrained network from trainedNet.mat and performs
prediction for image classification based on SqueezeNet deep learning CNN.

open_system('ecg_dl_cwt/ECG Preprocessing');

The ScalogramFromECG function block defines a function called ecg_to_scalogram that:

• Uses 65536 samples of double-precision ECG data as input.
• Create time frequency representation from the ECG data by applying Wavelet transform.
• Obtain scalogram from the wavelet coefficients.
• Convert the scalogram to image of size (227x227x3).

The function signature of ecg_to_scalogram is shown.

type ecg_to_scalogram

function ecg_image  = ecg_to_scalogram(ecg_signal)

% Copyright 2020 The MathWorks, Inc.

persistent jetdata;
if(isempty(jetdata))
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    jetdata = ecgColorMap(128,'single');
end
% Obtain wavelet coefficients from ECG signal
cfs = cwt_ecg(ecg_signal);  
% Obtain scalogram from wavelet coefficients
image = ind2rgb(im2uint8(rescale(cfs)),jetdata);
ecg_image = im2uint8(imresize(image,[227,227]));

end

ECG Postprocessing

The ECG Postprocessing MATLAB function block defines the label_prob_image function that
finds the label for the scalogram image based on the highest score from the scores outputed by the
image classifier. It outputs the scalogram image with the label and confidence printed on it.

type label_prob_image

function final_image = label_prob_image(ecg_image, scores, labels)

% Copyright 2020-2021 The MathWorks, Inc.

scores = double(scores);
% Obtain maximum confidence 
[prob,index] = max(scores);
confidence = prob*100;
% Obtain label corresponding to maximum confidence
label = erase(char(labels(index)),'_label');
text = cell(2,1);
text{1} = ['Classification: ' label];
text{2} = ['Confidence: ' sprintf('%0.2f',confidence) '%'];
position = [135 20 0 0; 130 40 0 0];
final_image = insertObjectAnnotation(ecg_image,'rectangle',position,...
    text,'TextBoxOpacity',0.9,'FontSize',9);

end

Run the Simulation

Open Configuration Parameters dialog box.

In Simulation Target pane, select GPU acceleration. In the Deep Learning group, select the
target library as cuDNN.
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To verify the algorithm and display the labels and confidence score of the test ECG signal loaded in
the workspace, run the simulation.

set_param('ecg_dl_cwt', 'SimulationMode', 'Normal');
sim('ecg_dl_cwt');
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Generate and Build the Simulink Model

In Code Generation pane, select the Language as C++ and enable Generate GPU code.

Open Code Generation > GPU Code pane. In the subcategory Libraries, enable cuBLAS,
cuSOLVER and cuFFT.

Generate and build the Simulink model on the host GPU by using the slbuild command. The code
generator places the files in a build folder, a subfolder named ecg_dl_cwt_ert_rtw under your
current working folder.

status = evalc("slbuild('ecg_dl_cwt')");

Generated CUDA® Code

The subfolder named ecg_dl_cwt_ert_rtw contains the generated C++ codes corresponding to
the different blocks in the Simulink model and the specific operations being performed in those
blocks. For example, the file trainedNet0_ecg_dl_cwt0.h contains the C++ class which contains
certain attributes such as numLayers and member functions such as getBatchSize(), predict().
This class represents the pretrained SqueezeNet which has been loaded in the Simulink model.
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Cleanup

Close the Simulink model.

close_system('ecg_dl_cwt/ECG Preprocessing');
close_system('ecg_dl_cwt');

See Also
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set_param | sim | slbuild

More About
• “Simulation Acceleration by Using GPU Coder” on page 3-2
• “Code Generation from Simulink Models with GPU Coder” on page 3-8
• “GPU Code Generation for Deep Learning Networks Using MATLAB Function Block” on page 3-

14
• “Targeting NVIDIA Embedded Boards” on page 3-30
• “Numerical Equivalence Testing” on page 3-32
• “Parameter Tuning and Signal Monitoring by Using External Mode” on page 3-38
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Code Generation for a Deep Learning Simulink Model that
Performs Lane and Vehicle Detection

This example shows how to develop a CUDA® application from a Simulink® model that performs
lane and vehicle detection using convolutional neural networks (CNN). This example takes the frames
of a traffic video as an input, outputs two lane boundaries that correspond to the left and right lanes
of the ego vehicle, and detects vehicles in the frame. This example uses the pretrained lane detection
network from the Lane Detection Optimized with GPU Coder example of the GPU Coder Toolbox™.
For more information, see “Lane Detection Optimized with GPU Coder” on page 4-124. This example
also uses the pretrained vehicle detection network from the Object Detection Using YOLO v2 Deep
Learning example of the Computer Vision toolbox™. For more information, see “Object Detection
Using YOLO v2 Deep Learning” (Computer Vision Toolbox).

This example illustrates the following concepts:

• Model the lane detection application in Simulink. First the traffic video is preprocessed by resizing
to 227x227x3 and multiplication by a constant factor of 255. Subsequently, it is processed by the
pretrained network loaded in the Predict block from the Deep Learning Toolbox™. Finally, if the
left and right lane boundaries are detected, the parabolic coefficients to model the trajectories of
the lane boundaries are obtained.

• Model the vehicle detection application in Simulink. The traffic video is processed by a pretrained
YOLO v2 detector. This network detects vehicles in the video and outputs the coordinates of the
bounding boxes for these vehicles and their confidence score.

• Configure the model for code generation.
• Generate a CUDA executable for the Simulink model.

Third-Party Prerequisites

• CUDA enabled NVIDIA GPU.
• NVIDIA CUDA toolkit and driver.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Algorithmic Workflow

The block diagram for the algorithmic workflow of the Simulink model is shown.
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Get Pretrained Lane and Vehicle Detection Networks

This example uses the trainedLaneNet and yolov2ResNet50VehicleExample MAT-files
containing the pretrained networks. The files are approximately 143MB and 98MB in size,
respectively. Download the files from the MathWorks website.

lanenetFile = matlab.internal.examples.downloadSupportFile('gpucoder/cnn_models/lane_detection','trainedLaneNet.mat');
vehiclenetFile = matlab.internal.examples.downloadSupportFile('vision/data','yolov2ResNet50VehicleExample.mat');

Download Test Traffic Video

To test the model, the example uses the Caltech lanes dataset. The file is approximately 16 MB in
size. Download the files from the MathWorks website.

mediaFile = matlab.internal.examples.downloadSupportFile('gpucoder/media','caltech_washington1.avi');

Lane and Vehicle Detection Simulink Model

The Simulink model for performing lane and vehicle detection on the traffic video is shown. When the
model runs, the Video Viewer block displays the traffic video with lane and vehicle annotations.

open_system('laneAndVehicleDetection');

Set the file paths of the dowloaded network model in the predict and detector blocks of the Simulink
model. Set the location of the test video to be loaded by the Simulink model.

set_param('laneAndVehicleDetection/Lane Detection','NetworkFilePath',lanenetFile)
set_param('laneAndVehicleDetection/Vehicle Detector','DetectorFilePath',vehiclenetFile)
set_param('laneAndVehicleDetection/Traffic Video','inputFileName',mediaFile)
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Lane Detection

The Predict block loads the pretrained lane detection network from the trainedLaneNet.mat file.
This network takes an image as an input and outputs two lane boundaries that correspond to the left
and right lanes of the ego vehicle. Each lane boundary is represented by the parabolic equation:

Here y is the lateral offset and x is the longitudinal distance from the vehicle. The network outputs
the three parameters a, b, and c per lane. The network architecture is similar to AlexNet except that
the last few layers are replaced by a smaller fully connected layer and regression output layer. The
LaneDetectionCoordinates MATLAB function block defines a function
lane_detection_coordinates that takes the output from the predict block and outputs three
parameters i.e. laneFound, ltPts and rtPts. Thresholding is used to determine if both left and
right lane boundaries are both found. If both are found, laneFound is set to be true and the
trajectories of the boundaries are calculated and stored in ltPts and rtPts respectively.

type lane_detection_coordinates

function [laneFound,ltPts,rtPts] = lane_detection_coordinates(laneNetOut)

% Copyright 2020-2021 The MathWorks, Inc.

persistent laneCoeffMeans;
if isempty(laneCoeffMeans)
    laneCoeffMeans = [-0.0002,0.0002,1.4740,-0.0002,0.0045,-1.3787];
end

persistent laneCoeffStds;
if isempty(laneCoeffStds)
    laneCoeffStds = [0.0030,0.0766,0.6313,0.0026,0.0736,0.9846];
end

params = laneNetOut .* laneCoeffStds + laneCoeffMeans;

% 'c' should be more than 0.5 for it to be a right lane
isRightLaneFound = abs(params(6)) > 0.5;
isLeftLaneFound =  abs(params(3)) > 0.5;

persistent vehicleXPoints;
if isempty(vehicleXPoints)
    vehicleXPoints = 3:30; %meters, ahead of the sensor
end

ltPts = coder.nullcopy(zeros(28,2,'single'));
rtPts = coder.nullcopy(zeros(28,2,'single'));

if isRightLaneFound && isLeftLaneFound
    rtBoundary = params(4:6);
    rt_y = computeBoundaryModel(rtBoundary, vehicleXPoints);
    ltBoundary = params(1:3);
    lt_y = computeBoundaryModel(ltBoundary, vehicleXPoints);
    
    % Visualize lane boundaries of the ego vehicle
    tform = get_tformToImage;
    % Map vehicle to image coordinates
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    ltPts =  tform.transformPointsInverse([vehicleXPoints', lt_y']);
    rtPts =  tform.transformPointsInverse([vehicleXPoints', rt_y']);
    laneFound = true;
else
    laneFound = false;
end

end

Vehicle Detection

A YOLO v2 object detection network is composed of two subnetworks: a feature extraction network
followed by a detection network. This pretrained network uses a ResNet-50 for feature extraction.
The detection sub-network is a small CNN compared to the feature extraction network and is
composed of a few convolutional layers and layers specific to YOLO v2. The Simulink model performs
vehicle detection using the Object Detector block from the Computer Vision Toolbox( TM). This
block takes an image as input and outputs the bounding box coordinates along with the confidence
scores for vehicles in the image.

Annotation of Vehicle Bounding Boxes and Lane Trajectory in Traffic Video

The LaneVehicleAnnotation MATLAB function block defines a function
lane_vehicle_annotation which annotates the vehicle bounding boxes along with the confidence
scores. Also, if laneFound is true, then the left and right lane boundaries stored in ltPts and rtPts
are annotated in the traffic video.

type lane_vehicle_annotation

function In = lane_vehicle_annotation(laneFound,ltPts,rtPts,bboxes,scores,In)

% Copyright 2020-2021 The MathWorks, Inc.

if ~isempty(bboxes)
    In = insertObjectAnnotation(In, 'rectangle',bboxes,scores);
end

pts = coder.nullcopy(zeros(28, 4, 'single'));
if laneFound
    prevpt =  [ltPts(1,1) ltPts(1,2)];
    for k = 2:1:28
        pts(k,1:4) = [prevpt ltPts(k,1) ltPts(k,2)];
        prevpt = [ltPts(k,1) ltPts(k,2)];
    end
    In = insertShape(In, 'Line', pts, 'LineWidth', 2);
    prevpt =  [rtPts(1,1) rtPts(1,2)];
    for k = 2:1:28
        pts(k,1:4) = [prevpt rtPts(k,1) rtPts(k,2)];
        prevpt = [rtPts(k,1) rtPts(k,2)];
    end
    In = insertShape(In, 'Line', pts, 'LineWidth', 2);
    In = insertMarker(In, ltPts);
    In = insertMarker(In, rtPts);
end

end
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Run the Simulation

Open Configuration Parameters dialog box.

In Simulation Target pane, select GPU acceleration. In the Deep Learning group, select the
target library as cuDNN.

set_param(bdroot,'GPUAcceleration','on');
set_param(bdroot,'SimDLTargetLibrary','cudnn');
set_param(bdroot,'DLTargetLibrary','cudnn');

To verify the lane and vehicle detection algorithms and display the lane trajectories, vehicle bounding
boxes and scores for the traffic video loaded in the Simulink model, run the simulation.

set_param('laneAndVehicleDetection', 'SimulationMode', 'Normal');
sim('laneAndVehicleDetection');
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Generate and Build the Simulink Model

In Code Generation pane, select the Language as C++ and enable Generate GPU code.

set_param(bdroot,'TargetLang','C++');
set_param(bdroot,'GenerateGPUCode','CUDA');
set_param(bdroot,'GenCodeOnly','on');
if ispc
    set_param(bdroot,'ProdHWDeviceType','Intel->x86-64 (Windows64)');
else
    set_param(bdroot,'ProdHWDeviceType','Intel->x86-64 (Linux 64)');
end
set_param(bdroot,'ProdLongLongMode','on');
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In the subcategory Libraries of the Code Generation > GPU Code pane, enable cuBLAS,
cuSOLVER and cuFFT.

set_param(bdroot,'GPUcuBLAS','on');
set_param(bdroot,'GPUcuSOLVER','on');
set_param(bdroot,'GPUcuFFT','on');

Generate and build the Simulink model on the host GPU by using the slbuild command. The code
generator places the files in a build folder, a subfolder named
laneAndVehicleDetection_ert_rtw under your current working folder.

status = evalc("slbuild('laneAndVehicleDetection')");

Generated CUDA Code

The subfolder named laneAndVehicleDetection_ert_rtw contains the generated C++ codes
corresponding to the different blocks in the Simulink model and the specific operations being
performed in those blocks. For example, the file
trainedLaneNet0_laneAndVehicleDetection0.h contains the C++ class which contains
attributes and member functions representing the pretrained lane detection network.

3 Kernel Creation from Simulink Models

3-66



Similarly, the file yolov2ResNet50VehicleExample0_laneAndVehicleDetection0.h contains
the C++ class representing the pretrained YOLO v2 detection network.
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See Also
Functions
open_system | load_system | save_system | close_system | bdclose | get_param |
set_param | sim | slbuild

More About
• “Simulation Acceleration by Using GPU Coder” on page 3-2
• “Code Generation from Simulink Models with GPU Coder” on page 3-8
• “GPU Code Generation for Deep Learning Networks Using MATLAB Function Block” on page 3-

14
• “Targeting NVIDIA Embedded Boards” on page 3-30
• “Numerical Equivalence Testing” on page 3-32
• “Parameter Tuning and Signal Monitoring by Using External Mode” on page 3-38
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Deep Learning

• “Workflow” on page 4-3
• “Supported Networks, Layers, and Classes” on page 4-6
• “Analyze Network for Code Generation” on page 4-44
• “Code Generation for dlarray” on page 4-52
• “dlarray Limitations for Code Generation” on page 4-62
• “Generated CNN Class Hierarchy” on page 4-65
• “Load Pretrained Networks for Code Generation” on page 4-66
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-69
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-78
• “Code Generation for Deep Learning Networks Targeting ARM Mali GPUs” on page 4-88
• “Update Network Parameters After Code Generation” on page 4-92
• “Data Layout Considerations in Deep Learning” on page 4-96
• “Quantization of Deep Neural Networks” on page 4-99
• “Generate INT8 Code for Deep Learning Networks” on page 4-107
• “Code Generation for Deep Learning Networks” on page 4-117
• “Lane Detection Optimized with GPU Coder” on page 4-124
• “Traffic Sign Detection and Recognition” on page 4-132
• “Logo Recognition Network” on page 4-140
• “Deep Learning Prediction with NVIDIA TensorRT Library” on page 4-145
• “Code Generation for Semantic Segmentation Network” on page 4-152
• “Train and Deploy Fully Convolutional Networks for Semantic Segmentation” on page 4-157
• “Code Generation for Semantic Segmentation Network That Uses U-net” on page 4-169
• “Code Generation for Denoising Deep Neural Network” on page 4-176
• “Code Generation for Object Detection by Using YOLO v2” on page 4-180
• “Code Generation for a Sequence-to-Sequence LSTM Network” on page 4-184
• “Deep Learning Prediction on ARM Mali GPU” on page 4-190
• “Code Generation for Object Detection by Using Single Shot Multibox Detector” on page 4-193
• “Code Generation for a Deep Learning Simulink Model to Classify ECG Signals” on page 4-197
• “Code Generation for Lidar Point Cloud Segmentation Network” on page 4-204
• “Code Generation for a Video Classification Network” on page 4-211
• “Code Generation For Object Detection Using YOLO v3 Deep Learning” on page 4-217
• “Generate Digit Images on NVIDIA GPU Using Variational Autoencoder ” on page 4-222
• “Quantize Residual Network Trained for Image Classification and Generate CUDA Code”

on page 4-229
• “Quantize Layers in Object Detectors and Generate CUDA Code” on page 4-237
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• “Parameter Pruning and Quantization of Image Classification Network” on page 4-249
• “Code Generation For Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning”

on page 4-266
• “Code Generation For Lidar Object Detection Using PointPillars Deep Learning” on page 4-272
• “Code Generation for Object Detection Using YOLO v4 Deep Learning” on page 4-277
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Workflow
In a typical Convolutional Neural Networks (CNN) workflow, you start with constructing a CNN
architecture by using the Deep Learning Toolbox, and train the network in tandem with the Parallel
Computing Toolbox™. Alternatively, you can import a ConvNet already trained on a large dataset,
and transfer the learned features. Transfer learning implies taking a CNN trained for one set of
classification problems and retraining it to classify a different set of classes. Here the last few layers
of the CNN are relearned. Again, Parallel Computing Toolbox is used in the learning phase. You can
also import a trained CNN network from other frameworks like Caffe or MatConvNet into a
SeriesNetwork object.

Once you have obtained the trained network, you can use GPU Coder to generate C++ or CUDA code
and deploy CNN on multiple embedded platforms that use NVIDIA or ARM GPU processors. The
generated code implements the CNN by using the architecture, the layers, and parameters that you
specify in the input SeriesNetwork or DAGNetwork object.

The code generator takes advantage of NVIDIA CUDA deep neural network library (cuDNN), NVIDIA
TensorRT high performance inference library for NVIDIA GPUs and ARM Compute Library for
computer vision and machine learning for ARM Mali GPUs.

The generated code can be integrated into your project as source code, static or dynamic libraries, or
executables that you can deploy to a variety of NVIDIA and ARM Mali GPU platforms. For performing
deep learning on ARM Mali GPU targets, you generate code on the host development computer. Then,
to build and run the executable program move the generated code to the ARM target platform.

 Workflow
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See Also
Functions
coder.getDeepLearningLayers | codegen | coder.DeepLearningConfig

Objects
coder.gpuConfig | coder.CodeConfig | coder.EmbeddedCodeConfig | coder.gpuEnvConfig
| coder.CuDNNConfig | coder.TensorRTConfig

More About
• “Pretrained Deep Neural Networks” (Deep Learning Toolbox)
• “Get Started with Transfer Learning” (Deep Learning Toolbox)
• “Create Simple Deep Learning Network for Classification” (Deep Learning Toolbox)
• “Supported Networks, Layers, and Classes” on page 4-6
• “Load Pretrained Networks for Code Generation” on page 4-66
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-69
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• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-78
• “Code Generation for Deep Learning Networks Targeting ARM Mali GPUs” on page 4-88
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Supported Networks, Layers, and Classes

Supported Pretrained Networks
GPU Coder supports code generation for series and directed acyclic graph (DAG) convolutional
neural networks (CNNs or ConvNets). You can generate code for any trained convolutional neural
network whose layers are supported for code generation. See “Supported Layers” on page 4-11. You
can train a convolutional neural network on either a CPU, a GPU, or multiple GPUs by using the Deep
Learning Toolbox or use one of the pretrained networks listed in the table and generate CUDA code.

Network Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

AlexNet AlexNet
convolutional
neural network.
For the pretrained
AlexNet model, see
alexnet.

The syntax
alexnet('Weigh
ts','none') is
not supported for
code generation.

Yes Yes Yes

Caffe Network Convolutional
neural network
models from Caffe.
For importing a
pretrained network
from Caffe, see
importCaffeNet
work.

Yes Yes Yes

Darknet-19 Darknet-19
convolutional
neural network.
For more
information, see
darknet19.

The syntax
darknet19('Wei
ghts','none') is
not supported for
code generation.

Yes Yes Yes
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Network Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

Darknet-53 Darknet-53
convolutional
neural network. for
more information,
see darknet53.

The syntax
darknet53('Wei
ghts','none') is
not supported for
code generation.

Yes Yes Yes

DeepLab v3+ DeepLab v3+
convolutional
neural network.
For more
information, see
deeplabv3plusL
ayers.

Yes Yes No

DenseNet-201 DenseNet-201
convolutional
neural network.
For the pretrained
DenseNet-201
model, see
densenet201.

The syntax
densenet201('W
eights','none'
) is not supported
for code
generation.

Yes Yes Yes

EfficientNet-b0 EfficientNet-b0
convolutional
neural network.
For the pretrained
EfficientNet-b0
model, see
efficientnetb0.

The syntax
efficientnetb
0('Weights','n
one') is not
supported for code
generation.

Yes Yes Yes
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Network Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

GoogLeNet GoogLeNet
convolutional
neural network.
For the pretrained
GoogLeNet model,
see googlenet.

The syntax
googlenet('Wei
ghts','none') is
not supported for
code generation.

Yes Yes Yes

Inception-ResNet-
v2

Inception-ResNet-
v2 convolutional
neural network.
For the pretrained
Inception-ResNet-
v2 model, see
inceptionresne
tv2.

Yes Yes No

Inception-v3 Inception-v3
convolutional
neural network.
For the pretrained
Inception-v3
model, see
inceptionv3.

The syntax
inceptionv3('W
eights','none'
) is not supported
for code
generation.

Yes Yes Yes
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Network Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

Mobilenet-v2 MobileNet-v2
convolutional
neural network.
For the pretrained
MobileNet-v2
model, see
mobilenetv2.

The syntax
mobilenetv2('W
eights','none'
) is not supported
for code
generation.

Yes Yes Yes

NASNet-Large NASNet-Large
convolutional
neural network.
For the pretrained
NASNet-Large
model, see
nasnetlarge.

Yes Yes No

NASNet-Mobile NASNet-Mobile
convolutional
neural network.
For the pretrained
NASNet-Mobile
model, see
nasnetmobile.

Yes Yes No

ResNet ResNet-18,
ResNet-50, and
ResNet-101
convolutional
neural networks.
For the pretrained
ResNet models,
see resnet50,
resnet18, and
resnet101.

The syntax
resnetXX('Weig
hts','none') is
not supported for
code generation.

Yes Yes Yes
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Network Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

SegNet Multi-class
pixelwise
segmentation
network. For more
information, see
segnetLayers.

Yes Yes No

SqueezeNet Small deep neural
network. For the
pretrained
SqueezeNet
models, see
squeezenet.

The syntax
squeezenet('We
ights','none')
is not supported
for code
generation.

Yes Yes Yes

VGG-16 VGG-16
convolutional
neural network.
For the pretrained
VGG-16 model, see
vgg16.

The syntax
vgg16('Weights
','none') is not
supported for code
generation.

Yes Yes Yes

VGG-19 VGG-19
convolutional
neural network.
For the pretrained
VGG-19 model, see
vgg19.

The syntax
vgg19('Weights
','none') is not
supported for code
generation.

Yes Yes Yes
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Network Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

Xception Xception
convolutional
neural network.
For the pretrained
Xception model,
see xception.

The syntax
xception('Weig
hts','none') is
not supported for
code generation.

Yes Yes Yes

YOLO v2 You only look once
version 2
convolutional
neural network
based object
detector. For more
information, see
yolov2Layers

Yes Yes Yes

Supported Layers
The following layers are supported for code generation by GPU Coder for the target deep learning
libraries specified in the table.

Input Layers

Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

imageInputLaye
r

An image input
layer inputs 2-D
images to a
network and
applies data
normalization.

Code generation
does not support
'Normalization
' specified using a
function handle.

Yes Yes Yes
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Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

sequenceInputL
ayer

A sequence input
layer inputs
sequence data to a
network.

The cuDNN library
supports vector
and 2-D image
sequences. The
TensorRT library
support only vector
input sequences.

For vector
sequence inputs,
the number of
features must be a
constant during
code generation.

For image
sequence inputs,
the height, width,
and the number of
channels must be a
constant during
code generation.

Code generation
does not support
'Normalization
' specified using a
function handle.

Yes Yes No

featureInputLa
yer

A feature input
layer inputs
feature data to a
network and
applies data
normalization.

Yes Yes Yes
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Convolution and Fully Connected Layers

Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

convolution2dL
ayer

A 2-D
convolutional layer
applies sliding
convolutional
filters to the input.

Yes Yes Yes

fullyConnected
Layer

A fully connected
layer multiplies the
input by a weight
matrix and then
adds a bias vector.

Yes Yes No

groupedConvolu
tion2dLayer

A 2-D grouped
convolutional layer
separates the input
channels into
groups and applies
sliding
convolutional
filters. Use
grouped
convolutional
layers for channel-
wise separable
(also known as
depth-wise
separable)
convolution.

Code generation
for the ARM Mali
GPU is not
supported for a 2-
D grouped
convolution layer
that has the
NumGroups
property set as
'channel-wise'
or a value greater
than two.

Yes Yes Yes

transposedConv
2dLayer

A transposed 2-D
convolution layer
upsamples feature
maps.

Yes Yes Yes
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Sequence Layers

Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

bilstmLayer

A bidirectional
LSTM (BiLSTM)
layer learns
bidirectional long-
term dependencies
between time steps
of time series or
sequence data.
These
dependencies can
be useful when you
want the network
to learn from the
complete time
series at each time
step.

For code
generation, the
StateActivatio
nFunction
property must be
set to 'tanh'.

For code
generation, the
GateActivation
Function
property must be
set to 'sigmoid'.

Yes Yes No

flattenLayer

A flatten layer
collapses the
spatial dimensions
of the input into
the channel
dimension.

Yes No No
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Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

 gruLayer
A GRU layer learns
dependencies
between time steps
in time series and
sequence data.

Code generation
supports only the
'after-
multiplication
' and
'recurrent-
bias-after-
multiplication
' reset gate
modes.

Yes Yes No

 lstmLayer
An LSTM layer
learns long-term
dependencies
between time steps
in time series and
sequence data.

For code
generation, the
StateActivatio
nFunction
property must be
set to 'tanh'.

For code
generation, the
GateActivation
Function
property must be
set to 'sigmoid'.

Yes Yes No
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Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

sequenceFoldin
gLayer

A sequence folding
layer converts a
batch of image
sequences to a
batch of images.
Use a sequence
folding layer to
perform
convolution
operations on time
steps of image
sequences
independently.

Yes No No

sequenceInputL
ayer

A sequence input
layer inputs
sequence data to a
network.

The cuDNN library
supports vector
and 2-D image
sequences. The
TensorRT library
support only vector
input sequences.

For vector
sequence inputs,
the number of
features must be a
constant during
code generation.

For image
sequence inputs,
the height, width,
and the number of
channels must be a
constant during
code generation.

Code generation
does not support
'Normalization
' specified using a
function handle.

Yes Yes No
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Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

sequenceUnfold
ingLayer

A sequence
unfolding layer
restores the
sequence structure
of the input data
after sequence
folding.

Yes No No

wordEmbeddingL
ayer

A word embedding
layer maps word
indices to vectors.

Yes Yes No

Activation Layers

Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

clippedReluLay
er

A clipped ReLU
layer performs a
threshold
operation, where
any input value
less than zero is
set to zero and any
value above the
clipping ceiling is
set to that clipping
ceiling.

Yes Yes Yes

 eluLayer
An ELU activation
layer performs the
identity operation
on positive inputs
and an exponential
nonlinearity on
negative inputs.

Yes Yes No

leakyReluLayer

A leaky ReLU layer
performs a
threshold
operation, where
any input value
less than zero is
multiplied by a
fixed scalar.

Yes Yes Yes
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Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

 reluLayer
A ReLU layer
performs a
threshold
operation to each
element of the
input, where any
value less than
zero is set to zero.

Yes Yes Yes

softplusLayer

A SoftplusLayer
is a deep neural
network layer that
implements the
softplus activation
Y = log(1 + eX),
which ensures that
the output is
always positive.

Yes Yes No

 swishLayer
A swish activation
layer applies the
swish function on
the layer inputs.

Yes Yes No

 tanhLayer
A hyperbolic
tangent (tanh)
activation layer
applies the tanh
function on the
layer inputs.

Yes Yes Yes

Normalization, Dropout, and Cropping Layers

Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

batchNormaliza
tionLayer

A batch
normalization layer
normalizes each
input channel
across a mini-
batch.

Yes Yes Yes

crop2dLayer

A 2-D crop layer
applies 2-D
cropping to the
input.

Yes Yes Yes
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Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

crossChannelNo
rmalizationLay
er

A channel-wise
local response
(cross-channel)
normalization layer
carries out
channel-wise
normalization.

Yes Yes Yes

dropoutLayer

A dropout layer
randomly sets
input elements to
zero with a given
probability.

Yes Yes Yes

groupNormaliza
tionLayer

A group
normalization layer
normalizes a mini-
batch of data
across grouped
subsets of
channels for each
observation
independently.

Yes Yes No

scalingLayer

Scaling layer for
actor or critic
network.

For code
generation, values
for the 'Scale'
and 'Bias'
properties must
have the same
dimension.

Yes Yes Yes

Pooling and Unpooling Layers

Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

averagePooling
2dLayer

An average pooling
layer performs
down-sampling by
dividing the input
into rectangular
pooling regions
and computing the
average values of
each region.

Yes Yes Yes

 Supported Networks, Layers, and Classes
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Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

globalAverageP
ooling2dLayer

A global average
pooling layer
performs down-
sampling by
computing the
mean of the height
and width
dimensions of the
input.

Yes Yes Yes

globalMaxPooli
ng2dLayer

A global max
pooling layer
performs down-
sampling by
computing the
maximum of the
height and width
dimensions of the
input.

Yes Yes Yes
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Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

maxPooling2dLa
yer

A max pooling
layer performs
down-sampling by
dividing the input
into rectangular
pooling regions,
and computing the
maximum of each
region.

If equal max values
exists along the
off-diagonal in a
kernel window,
implementation
differences for the
maxPooling2dLa
yer might cause
minor numerical
mismatch between
MATLAB and the
generated code.
This issue also
causes mismatch
in the indices of
the maximum
value in each
pooled region. For
more information,
see
maxPooling2dLa
yer.

Yes Yes Yes
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Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

maxUnpooling2d
Layer

A max unpooling
layer unpools the
output of a max
pooling layer.

If equal max values
exists along the
off-diagonal in a
kernel window,
implementation
differences for the
maxPooling2dLa
yer might cause
minor numerical
mismatch between
MATLAB and the
generated code.
This issue also
causes mismatch
in the indices of
the maximum
value in each
pooled region. For
more information,
see
maxUnpooling2d
Layer.

Yes Yes No

Combination Layers

Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

additionLayer

An addition layer
adds inputs from
multiple neural
network layers
element-wise.

Yes Yes Yes

concatenationL
ayer

A concatenation
layer takes inputs
and concatenates
them along a
specified
dimension.

Yes Yes No
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Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

depthConcatena
tionLayer

A depth
concatenation
layer takes inputs
that have the same
height and width
and concatenates
them along the
third dimension
(the channel
dimension).

Yes Yes Yes

Object Detection Layers

Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

anchorBoxLayer

An anchor box
layer stores anchor
boxes for a feature
map used in object
detection
networks.

Yes Yes Yes

depthToSpace2d
Layer

A 2-D depth to
space layer
permutes data
from the depth
dimension into
blocks of 2-D
spatial data.

Yes Yes Yes

focalLossLayer

A focal loss layer
predicts object
classes using focal
loss.

Yes Yes Yes

spaceToDepthLa
yer

A space to depth
layer permutes the
spatial blocks of
the input into the
depth dimension.
Use this layer
when you need to
combine feature
maps of different
size without
discarding any
feature data.

Yes Yes Yes
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Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

ssdMergeLayer

An SSD merge
layer merges the
outputs of feature
maps for
subsequent
regression and
classification loss
computation.

Yes Yes No

rcnnBoxRegress
ionLayer

A box regression
layer refines
bounding box
locations by using
a smooth L1 loss
function. Use this
layer to create a
Fast or Faster R-
CNN object
detection network.

Yes Yes Yes

rpnClassificat
ionLayer

A region proposal
network (RPN)
classification layer
classifies image
regions as either
object or
background by
using a cross
entropy loss
function. Use this
layer to create a
Faster R-CNN
object detection
network.

Yes Yes Yes

YOLOv2OutputLa
yer

Create output
layer for YOLO v2
object detection
network.

Yes Yes Yes

YOLOv2ReorgLay
er

Create
reorganization
layer for YOLO v2
object detection
network.

Yes Yes Yes

YOLOv2Transfor
mLayer

Create transform
layer for YOLO v2
object detection
network.

Yes Yes Yes
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Output Layers

Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

classification
Layer

A classification
layer computes the
cross entropy loss
for multi-class
classification
problems with
mutually exclusive
classes.

Yes Yes Yes

dicePixelClass
ificationLayer

A Dice pixel
classification layer
provides a
categorical label
for each image
pixel or voxel using
generalized Dice
loss.

Yes Yes Yes

focalLossLayer

A focal loss layer
predicts object
classes using focal
loss.

Yes Yes Yes
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Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

 Output
Layer (Deep
Learning Toolbox)

All output layers
including custom
classification or
regression output
layers created by
using
nnet.layer.Cla
ssificationLay
er or
nnet.layer.Reg
ressionLayer.

For an example
showing how to
define a custom
classification
output layer and
specify a loss
function, see
“Define Custom
Classification
Output Layer”
(Deep Learning
Toolbox).

For an example
showing how to
define a custom
regression output
layer and specify a
loss function, see
“Define Custom
Regression Output
Layer” (Deep
Learning Toolbox).

Yes Yes Yes

pixelClassific
ationLayer

A pixel
classification layer
provides a
categorical label
for each image
pixel or voxel.

Yes Yes Yes
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Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

rcnnBoxRegress
ionLayer

A box regression
layer refines
bounding box
locations by using
a smooth L1 loss
function. Use this
layer to create a
Fast or Faster R-
CNN object
detection network.

Yes Yes Yes

regressionLaye
r

A regression layer
computes the half-
mean-squared-
error loss for
regression
problems.

Yes Yes Yes

rpnClassificat
ionLayer

A region proposal
network (RPN)
classification layer
classifies image
regions as either
object or
background by
using a cross
entropy loss
function. Use this
layer to create a
Faster R-CNN
object detection
network.

Yes Yes Yes

sigmoidLayer

A sigmoid layer
applies a sigmoid
function to the
input.

Yes Yes Yes

softmaxLayer

A softmax layer
applies a softmax
function to the
input.

Yes Yes Yes
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Custom Keras Layers

Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

nnet.keras.lay
er.ClipLayer
(Deep Learning
Toolbox)

Clips the input
between the upper
and lower bounds.

Yes Yes No

nnet.keras.lay
er.FlattenCSty
leLayer (Deep
Learning Toolbox)

Flatten activations
into 1-D assuming
C-style (row-major)
order.

Yes Yes Yes

nnet.keras.lay
er.GlobalAvera
gePooling2dLay
er (Deep Learning
Toolbox)

Global average
pooling layer for
spatial data.

Yes Yes Yes

nnet.keras.lay
er.PreluLayer
(Deep Learning
Toolbox)

Parametric
rectified linear
unit.

Yes Yes No

nnet.keras.lay
er.SigmoidLaye
r (Deep Learning
Toolbox)

Sigmoid activation
layer.

Yes Yes Yes

nnet.keras.lay
er.TanhLayer
(Deep Learning
Toolbox)

Hyperbolic tangent
activation layer.

Yes Yes Yes

nnet.keras.lay
er.TimeDistrib
utedFlattenCSt
yleLayer (Deep
Learning Toolbox)

Flatten a sequence
of input image into
a sequence of
vector, assuming
C-style (or row-
major) storage
ordering of the
input layer.

Yes Yes No

nnet.keras.lay
er.ZeroPadding
2dLayer (Deep
Learning Toolbox)

Zero padding layer
for 2-D input.

Yes Yes Yes
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Custom ONNX Layers

Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

nnet.onnx.laye
r.ClipLayer
(Deep Learning
Toolbox)

Clips the input
between the upper
and lower bounds.

Yes Yes No

nnet.onnx.laye
r.ElementwiseA
ffineLayer
(Deep Learning
Toolbox)

Layer that
performs element-
wise scaling of the
input followed by
an addition.

Yes Yes Yes

nnet.onnx.laye
r.FlattenInto2
dLayer (Deep
Learning Toolbox)

Flattens a MATLAB
2D image batch in
the way ONNX
does, producing a
2D output array
with CB format.

Yes Yes No

nnet.onnx.laye
r.FlattenLayer
(Deep Learning
Toolbox)

Flattens the spatial
dimensions of the
input tensor to the
channel
dimensions.

Yes Yes Yes

nnet.onnx.laye
r.GlobalAverag
ePooling2dLaye
r (Deep Learning
Toolbox)

Global average
pooling layer for
spatial data.

Yes Yes Yes

nnet.onnx.laye
r.IdentityLaye
r (Deep Learning
Toolbox)

Layer that
implements ONNX
identity operator.

Yes Yes Yes

nnet.onnx.laye
r.PreluLayer
(Deep Learning
Toolbox)

Parametric
rectified linear
unit.

Yes Yes No

nnet.onnx.laye
r.SigmoidLayer
(Deep Learning
Toolbox)

Sigmoid activation
layer.

Yes Yes Yes

nnet.onnx.laye
r.TanhLayer
(Deep Learning
Toolbox)

Hyperbolic tangent
activation layer.

Yes Yes Yes
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Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

nnet.onnx.laye
r.VerifyBatchS
izeLayer (Deep
Learning Toolbox)

Verify fixed batch
size.

Yes Yes Yes
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Custom Layers

Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

 Custom
layers

Custom layers,
with or without
learnable
parameters, that
you define for your
problem.

To learn how to
define custom deep
learning layers,
see “Define
Custom Deep
Learning Layers”
(Deep Learning
Toolbox) and
“Define Custom
Deep Learning
Layer for Code
Generation” (Deep
Learning Toolbox).

For an example on
how to generate
code for a network
with custom
layers, see “Code
Generation For
Object Detection
Using YOLO v3
Deep Learning” on
page 4-217.

The outputs of the
custom layer must
be fixed-size
arrays.

Using 'unified'
as the
MallocMode in
coder.gpuConfi
g requires extra
memory copies
leading to slower
performance. For
custom layers, it is
recommended to
use 'discrete'

Yes Yes No
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Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

mode. For more
information on
GPU memory
allocation, see
“Discrete and
Managed Modes”
on page 2-28

cuDNN targets
support both row-
major and column-
major code
generation for
custom layers.
TensorRT targets
support only
column-major code
generation.

For code
generation, custom
layers must
contain the
%#codegen
pragma.

Code generation
for a sequence
network containing
custom layer and
LSTM or GRU
layer is not
supported.

You can pass
dlarray to
custom layers if:

• The custom
layer is in
dlnetwork.

• Custom layer is
in a DAG or
series network
and either
inherits from
nnet.layer.F
ormattable or
has no
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Layer Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

backward
propagation.

For unsupported
dlarray methods,
then you must
extract the
underlying data
from the dlarray,
perform the
computations and
reconstruct the
data back into the
dlarray for code
generation. For
example,

function Z = predict(layer, X)

if coder.target('MATLAB')
   Z = doPredict(X);
else
   if isdlarray(X)
      X1 = extractdata(X);
      Z1 = doPredict(X1);
      Z = dlarray(Z1);
  else
      Z = doPredict(X);
  end
end

end

Supported Classes
The following classes are supported for code generation by GPU Coder for the target deep learning
libraries specified in the table.

 Supported Networks, Layers, and Classes
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Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

DAGNetwork Directed acyclic
graph (DAG)
network for deep
learning

• Only the
activations,
predict, and
classify
methods are
supported.

Yes Yes Yes
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Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

dlnetwork Deep learning
network for
custom training
loops

• Code
generation
supports only
the
InputNames
and
OutputNames
properties.

• The
Initialized
property of the
dlnetwork
object must be
set to true.

• You can
generate code
for dlnetwork
that have
vector and
image sequence
inputs. Code
generation
support
includes:

• dlarray
containing
vector
sequences
that have
'CT' or
'CBT' data
formats.

• dlarray
containing
image
sequences
that have
'SSCT' or
'SSCBT'
data
formats.

Yes Yes No
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Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

• Multi-input
dlnetwork
with
heterogeneo
us input
layers. For
RNN
networks,
multiple
input is not
supported.

• Code
generation
supports only
the predict
object function.
The dlarray
input to the
predict
method must be
a single
datatype.

• Code
generation
supports
dlnetwork for
cuDNN and
TensorRT
targets. Code
generation does
not support
dlnetwork for
ARM Mali
targets.

• When targeting
TensorRT with
INT8 precision,
the last layer(s)
of the network
must be a
softmaxLayer
layer.

• Code
generation
supports MIMO
dlnetworks.
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Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

• To create a
dlnetwork
object for code
generation, see
“Load
Pretrained
Networks for
Code
Generation” on
page 4-66.

pointPillarsOb
jectDetector

PointPillars
network to detect
objects in lidar
point clouds

• Only the
detect method
of the
pointPillars
ObjectDetect
or is supported
for code
generation.

• Only the
Threshold,
SelectStrong
est, and
MiniBatchSiz
e Name-Value
pairs of the
detect method
are supported.

Yes Yes No

SeriesNetwork Series network for
deep learning

• Only the
activations,
classify,
predict,
predictAndUp
dateState,
classifyAndU
pdateState,
and
resetState
object functions
are supported.

Yes Yes Yes
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Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

ssdObjectDetec
tor

Detect objects
using the SSD-
based detector.

• Only the
detect method
of the
ssdObjectDet
ector is
supported for
code
generation.

• The roi
argument to the
detect method
must be a
codegen
constant
(coder.cons
t()) and a 1x4
vector.

• Only the
Threshold,
SelectStrong
est, MinSize,
MaxSize, and
MiniBatchSiz
e Name-Value
pairs are
supported. All
Name-Value
pairs must be
compile-time
constants.

• The channel
and batch size
of the input
image must be
fixed size.

• The labels
output is
returned as a
categorical
array.

• In the
generated code,
the input is

Yes Yes No
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Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

rescaled to the
size of the input
layer of the
network. But
the bounding
box that the
detect method
returns is in
reference to the
original input
size.

• The bounding
boxes might not
numerically
match the
simulation
results.
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Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

yolov2ObjectDe
tector

Detect objects
using YOLO v2
object detector

• Only the
detect method
of the
yolov2Object
Detector is
supported for
code
generation.

• The roi
argument to the
detect method
must be a
codegen
constant
(coder.cons
t()) and a 1x4
vector.

• Only the
Threshold,
SelectStrong
est, MinSize,
MaxSize, and
MiniBatchSiz
e Name-Value
pairs are
supported.

• The height,
width, channel,
and batch size
of the input
image must be
fixed size.

• The minimum
batch size value
passed to
detect method
must be fixed
size.

Yes Yes Yes
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Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

yolov3ObjectDe
tector

Detect objects
using YOLO v3
object detector

• Only the
detect method
of the
yolov3Object
Detector is
supported for
code
generation.

• The roi
argument to the
detect method
must be a
codegen
constant
(coder.cons
t()) and a 1x4
vector.

• Only the
Threshold,
SelectStrong
est, MinSize,
MaxSize, and
MiniBatchSiz
e Name-Value
pairs are
supported.

• The height,
width, channel,
and batch size
of the input
image must be
fixed size.

• The minimum
batch size value
passed to
detect method
must be fixed
size.

Yes Yes No
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Name Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

yolov4ObjectDe
tector

Detect objects
using YOLO v4
object detector

• Only the
detect method
of the
yolov3Object
Detector is
supported for
code
generation.

• The roi
argument to the
detect method
must be a code
generation
constant
(coder.cons
t()) and a 1x4
vector.

• Only the
Threshold,
SelectStrong
est, MinSize,
MaxSize, and
MiniBatchSiz
e name-value
pairs for
detect are
supported.

Yes Yes No

See Also
Functions
coder.getDeepLearningLayers | codegen | coder.DeepLearningConfig

Objects
coder.gpuConfig | coder.CodeConfig | coder.EmbeddedCodeConfig | coder.gpuEnvConfig
| coder.CuDNNConfig | coder.TensorRTConfig

More About
• “Pretrained Deep Neural Networks” (Deep Learning Toolbox)
• “Get Started with Transfer Learning” (Deep Learning Toolbox)
• “Create Simple Deep Learning Network for Classification” (Deep Learning Toolbox)
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• “Load Pretrained Networks for Code Generation” on page 4-66
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-69
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-78
• “Code Generation for Deep Learning Networks Targeting ARM Mali GPUs” on page 4-88

 Supported Networks, Layers, and Classes

4-43



Analyze Network for Code Generation
You can analyze code generation compatibility of deep learning networks by using the
analyzeNetworkForCodegen function. Use the network code generation analyzer to validate a
SeriesNetwork, DAGNetwork, and dlnetwork for non-library and library targets and detect
problems before code generation. Supported library targets include MKL-DNN, ARM Compute,
CMSIS-NN, ARM Compute Mali, cuDNN, and TensorRT. Problems that
analyzeNetworkForCodegen detects include unsupported layers for code generation, network
issues, built-in layer specific issues, and issues with custom layers.

The analyzeNetworkForCodegen function requires the MATLAB Coder Interface for Deep
Learning Libraries and GPU Coder Interface for Deep Learning Libraries support packages. To
download and install support package, use the Add-On Explorer. You can also download the support
packages from MathWorks GPU Coder Team and MathWorks MATLAB Coder Team.

Check dlnetwork for Code Generation Compatibility

This example shows how to check code generation compatibility of multi-input dlnetwork by using
the analyzeNetworkForCodegen function.

The example checks code generation support for the following targets:

• Library free code generation.
• ARM® Compute Library.
• ARM Compute Library for Mali GPU.
• Intel® Math Kernel Library for Deep Neural Networks (Intel MKL-DNN).
• Common Microcontroller Software Interface Standard - Neural Network (CMSIS-NN) library.
• NVidia® CUDA® Deep Neural Network library (cuDNN).
• NVIDIA TensorRT high performance deep learning inference optimizer and run-time library.

Define Network Architecture

Construct a network with two branches. The network takes two inputs, with one input per branch.
Connect the branches using an addition layer.

layersBranch1 = [
    sequenceInputLayer(1,"Name","in1","Normalization","none")
    fullyConnectedLayer(32,"Name","fc_1")
    reluLayer("Name","relu_body1")
    lstmLayer(32,"Name","lstm", "OutputMode","last")
    fullyConnectedLayer(32,"Name","fc_3")
    reluLayer("Name","relu_body3")
    fullyConnectedLayer(4,"Name","output1")
    additionLayer(2,"Name","add")];

layersBranch2 = [
    imageInputLayer([5 5 3],"Name","in2","Normalization","none")
    fullyConnectedLayer(4,"Name","fc_1_b1")
    reluLayer("Name","output2")];

lgraph = layerGraph(layersBranch1);
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lgraph = addLayers(lgraph, layersBranch2);
lgraph = lgraph.connectLayers('output2', 'add/in2');

figure
plot(lgraph)

Create the dlnetwork.

dlnet = dlnetwork(lgraph);

Analyze Network for Code Generation

Run the analyzeNetworkForCodegen function for mobilenetv2, specifying the target libraries to
analyze. The analyzeNetworkForCodegen function requires the MATLAB® Coder™ Interface for
Deep Learning Libraries and the GPU Coder™ Interface for Deep Learning Libraries support
packages. To install the required support packages, use the Add-On Explorer.

targetLibraries = {'none','arm-compute','arm-compute-mali',...
    'mkldnn','cmsis-nn','cudnn', 'tensorrt'};
S = analyzeNetworkForCodegen(dlnet,TargetLibrary = targetLibraries);

                        Supported                                                                        NetworkDiagnostics                                                                                                                                                         LayerDiagnostics                                                                                 
                        _________    ___________________________________________________________________________________________________________________________________________________________    _________________________________________________________________________________________________________________________________________________________________________________

    none                  "Yes"      ""                                                                                                                                                             ""                                                                                                                                                                               
    arm-compute           "Yes"      ""                                                                                                                                                             ""                                                                                                                                                                               
    arm-compute-mali      "No"       "Found 1 issue(s). View network diagnostics."    "Found 2 unsupported layer type(s). View incompatible layer types."
    mkldnn                "Yes"      ""                                                                                                                                                             ""                                                                                                                                                                               
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    cmsis-nn              "No"       "Found 1 issue(s). View network diagnostics."    "Found 2 unsupported layer type(s). View incompatible layer types."
    cudnn                 "Yes"      ""                                                                                                                                                             ""                                                                                                                                                                               
    tensorrt              "Yes"      ""                                                                                                                                                             ""                                                                                                                                                                               

Display the layer diagnostics for CMSIS-NN code generation.

S(5).LayerDiagnostics

ans=4×3 table
     LayerName         LayerType              Diagnostics       
    ____________    _______________    _________________________

    "add"           "AdditionLayer"    "Unsupported layer type."
    "relu_body1"    "ReLULayer"        "Unsupported layer type."
    "relu_body3"    "ReLULayer"        "Unsupported layer type."
    "output2"       "ReLULayer"        "Unsupported layer type."

Display the network diagnostics for CMSIS-NN code generation.

S(5).NetworkDiagnostics.Diagnostics

ans = 
"Code generation for cmsis-nn library does not support dlnetwork objects with combinations of sequence and non-sequence input layers. "

Analyze Classification Network for Code Generation Compatibility

This example shows how to create a simple convolutional neural network for deep learning
classification and test the network for code generation compatibility. The example demonstrates how
to:

• Load and explore image data.
• Define the network architecture.
• Specify training options and train the network.
• Predict the labels of new data and calculate the classification accuracy.
• Analyze the deep learning network for code generation and report network and layer compatibility

issues by using analyzeNetworkForCodegen.

The analyzeNetworkForCodegen function requires the MATLAB® Coder™ Interface for Deep
Learning Libraries and the GPU Coder™ Interface for Deep Learning Libraries support packages. To
install the required support packages, use the Add-On Explorer.

Load and Explore Image Data

Load the digit sample data as an image datastore. Display some of the images in the datastore.

digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ...
    'nndatasets','DigitDataset');
imds = imageDatastore(digitDatasetPath, ...
    'IncludeSubfolders',true,'LabelSource','foldernames');

figure;
perm = randperm(10000,20);
for i = 1:20
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    subplot(4,5,i);
    imshow(imds.Files{perm(i)});
end

Check the size of the first image in digitData. Each image is 28-by-28-by-1 pixels.

img = readimage(imds,1);
size(img)

ans = 1×2

    28    28

Divide the data into training and validation data sets, so that each category in the training set
contains 750 images, and the validation set contains the remaining images from each label.

numTrainFiles = 750;
[imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,'randomize');

Define Network Architecture

Define the convolutional neural network architecture.

layers = [
    imageInputLayer([28 28 1])
    
    convolution2dLayer(3,8,'PaddingValue',5,'Name','conv1')
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    batchNormalizationLayer
    reluLayer
    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,16,'Padding','same','Name','conv2')
    batchNormalizationLayer
    reluLayer
    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,32,'Padding','same','Name','conv3')
    batchNormalizationLayer
    reluLayer
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Specify Training Options and Train Network

Train the network using stochastic gradient descent with momentum (SGDM) with an initial learning
rate of 0.01. Set the maximum number of epochs to 4. Monitor the network accuracy during training
by specifying validation data and validation frequency. Shuffle the data every epoch. Turn on the
training progress plot, and turn off the command window output.

options = trainingOptions('sgdm', ...
    'InitialLearnRate',0.01, ...
    'MaxEpochs',4, ...
    'Shuffle','every-epoch', ...
    'ValidationData',imdsValidation, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the network using the architecture defined by layers, the training data, and the training
options. The training progress plot shows the mini-batch loss and accuracy and the validation loss
and accuracy.

net = trainNetwork(imdsTrain,layers,options);
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Classify Validation Images and Compute Accuracy

Predict the labels of the validation data using the trained network, and calculate the final validation
accuracy. Accuracy is the fraction of labels that the network predicts correctly. In this case, more
than 99% of the predicted labels match the true labels of the validation set.

YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;

accuracy = sum(YPred == YValidation)/numel(YValidation)

accuracy = 0.9908

Analyze Network for Code Generation

To check the network for code generation compatibility, run analyzeNetworkForCodegen. By
default, the function validates against a set of default CPU and GPU deep learning library targets.
analyzeNetworkForCodegen returns a 1-by-N structure containing the analysis results.

S = analyzeNetworkForCodegen(net)
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                   Supported                                                                               LayerDiagnostics                                                                            
                   _________    _______________________________________________________________________________________________________________________________________________________________________

    none             "No"       "Found 1 issue(s) in 1 layer(s). View layer diagnostics."
    arm-compute      "No"       "Found 1 issue(s) in 1 layer(s). View layer diagnostics."
    mkldnn           "No"       "Found 1 issue(s) in 1 layer(s). View layer diagnostics."
    cudnn            "No"       "Found 1 issue(s) in 1 layer(s). View layer diagnostics."
    tensorrt         "No"       "Found 1 issue(s) in 1 layer(s). View layer diagnostics."

S=1×5 struct array with fields:
    TargetLibrary
    Supported
    NetworkDiagnostics
    LayerDiagnostics
    IncompatibleLayerTypes

To view the layer issues in the network for the cuDNN target, use the following command.
Alternatively, you can click on the View layer diagnostics hyperlink to display the layer issues.

S(4).LayerDiagnostics

ans=1×3 table
    LayerName         LayerType                                                                            Diagnostics                                                                  
    _________    ____________________    _______________________________________________________________________________________________________________________________________________

     "conv1"     "Convolution2DLayer"    "Layer 'conv1' has a non-default padding value. Code generation for nnet.cnn.layer.Convolution2DLayer only supports padding value equal to 0. "

The first convolution2dLayer (conv1) has non-zero padding value. For code generation, the
PaddingValue parameter must be equal to 0, which is the default value.

Fix Network Issues and Retrain

In this example, the padding value of the convolution layer can be set to zero.

layers(2) = convolution2dLayer(3,8,'PaddingValue',0,'Name','conv1');

Retrain the modified network using the following training options.

options = trainingOptions('sgdm', ...
    'InitialLearnRate',0.01, ...
    'MaxEpochs',4, ...
    'Shuffle','every-epoch', ...
    'ValidationData',imdsValidation, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','none');
net = trainNetwork(imdsTrain,layers,options);

Check the modified network for code generation compatibility.

S = analyzeNetworkForCodegen(net)

                   Supported
                   _________

    none             "Yes"  
    arm-compute      "Yes"  

4 Deep Learning

4-50



    mkldnn           "Yes"  
    cudnn            "Yes"  
    tensorrt         "Yes"  

S=1×5 struct array with fields:
    TargetLibrary
    Supported
    NetworkDiagnostics
    LayerDiagnostics
    IncompatibleLayerTypes

The analyzeNetworkForCodegen function reports no issues. The network is now ready for code
generation.

See Also
Functions
analyzeNetworkForCodegen | codegen | cnncodegen | coder.loadDeepLearningNetwork

Related Examples
• “Supported Networks, Layers, and Classes” on page 4-6
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-69
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-78
• “Code Generation for Deep Learning Networks Targeting ARM Mali GPUs” on page 4-88
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Code Generation for dlarray

In this section...
“Define dlarray for Code Generation” on page 4-52
“dlarray Object Functions with Code Generation Support” on page 4-53
“Deep Learning Toolbox Functions with dlarray Code Generation Support” on page 4-54
“MATLAB Functions with dlarray Code Generation Support” on page 4-54

A deep learning array stores data with optional data format labels for custom training loops, and
enables functions to compute and use derivatives through automatic differentiation. To learn more
about custom training loops, automatic differentiation, and deep learning arrays, see “Deep Learning
Custom Training Loops” (Deep Learning Toolbox).

Code generation supports both formatted and unformatted deep learning arrays. dlarray objects
containing gpuArrays are also supported for code generation. When you use deep learning arrays
with CPU and GPU code generation, adhere to these restrictions:

Define dlarray for Code Generation
For code generation, use the dlarray function to create deep learning arrays. For example, suppose
you have a pretrained dlnetwork network object in the mynet.mat MAT-file. To predict the
responses for this network, create an entry-point function in MATLAB.

There are two possibilities:

Note For code generation, the dlarray input to the predict method of the dlnetwork object must
be single data type.

Design 1 (Not recommended)

In this design example, the input and output to the entry-point function, foo are of dlarray types.
This type of entry-point function is not recommended for code generation because in MATLAB,
dlarray enforces the order of labels 'SCBTU'. This behavior is replicated for MEX code generation.
However, for standalone code generation such as static, dynamic libraries, or executables, the data
format follows the specification of the fmt argument of the dlarray object. As a result, if the input
or output of an entry-point function is a dlarray object and its order of labels is not 'SCBTU', then
the data layout will be different between the MATLAB environment and standalone code.

function dlOut = foo(dlIn)

persistent dlnet;
if isempty(dlnet)
    dlnet = coder.loadDeepLearningNetwork('mynet.mat');
end

dlOut = predict(dlnet, dlIn);

end
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Design 2 (Recommended)

In this design example, the input and output to foo are of primitive datatypes and the dlarray
object is created within the function. The extractdata method of the dlarray object returns the
data in the dlarray dlA as the output of foo. The output a has the same data type as the underlying
data type in dlA.

When compared to Design 1, this entry-point design has the following advantages:

• Easier integration with standalone code generation workflows such as static, dynamic libraries, or
executables.

• The data format of the output from the extractdata function has the same order ('SCBTU') in
both the MATLAB environment and the generated code.

• Improves performance for MEX workflows.
• Simplifies Simulink workflows using MATLAB Function blocks as Simulink does not natively

support dlarray objects.

function a = foo(in)
dlIn = dlarray(in, 'SSC');

persistent dlnet;
if isempty(dlnet)
    dlnet = coder.loadDeepLearningNetwork('mynet.mat');
end

dlA = predict(dlnet, dlIn);

a = extractdata(dlA);

end

To see an example of dlnetwork and dlarray usage with GPU Coder, see “Generate Digit Images
on NVIDIA GPU Using Variational Autoencoder” on page 4-222.

dlarray Object Functions with Code Generation Support
For code generation, you are restricted to the deep learning array object functions listed in this table.

dims Dimension labels for dlarray
extractdata Extract data from dlarray
finddim Find dimensions with specified label
stripdims Remove dlarray labels
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Deep Learning Toolbox Functions with dlarray Code Generation
Support
Deep Learning Operations

Function Description
fullyconnect The fully connect operation multiplies the input

by a weight matrix and then adds a bias vector.
sigmoid The sigmoid activation operation applies the

sigmoid function to the input data.
softmax The softmax activation operation applies the

softmax function to the channel dimension of the
input data.

MATLAB Functions with dlarray Code Generation Support
Unary Element-wise Functions

Function Notes and Limitations
abs The output dlarray has the same data format as

the input dlarray.
atan2 The output dlarray has the same data format as

the input dlarray.cos
cosh
cot
csc
exp
log • The output dlarray has the same data format

as the input dlarray.
• Because dlarray does not support complex

numbers, the input dlarray must have
nonnegative values.

sec The output dlarray has the same data format as
the input dlarray.sign

sin
sinh
sqrt • The output dlarray has the same data format

as the input dlarray.
• Because dlarray does not support complex

numbers, the input dlarray must have
nonnegative values.

tan The output dlarray has the same data format as
the input dlarray.tanh
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Function Notes and Limitations
uplus, +
uminus, -
erf

Binary Element-wise Operators

Function Notes and Limitations
minus, - If the two dlarray inputs are formatted, then

the output dlarray is formatted with a
combination of both of their data formats. The
function uses implicit expansion to combine the
inputs. For more information, see “Implicit
Expansion with Data Formats” (Deep Learning
Toolbox).

plus, +
power, .^
rdivide, ./
times, .*

Reduction Functions

Function Notes and Limitations
mean • The output dlarray has the same data format

as the input dlarray.
• The 'omitnan' option is not supported.
• If the input dlarray is on the GPU, the

'native' option is not supported.
prod • The output dlarray has the same data format

as the input dlarray.
• The 'omitnan' option is not supported.

sum

Extrema Functions

Function Notes and Limitations
ceil The output dlarray has the same data format as

the input dlarray.
eps • The output dlarray has the same data format

as the input dlarray.
• Use eps(ones(‘like’, x)) to get a scalar

epsilon value based on the data type of a
dlarray x.

fix The output dlarray has the same data format as
the input dlarray.

floor The output dlarray has the same data format as
the input dlarray.

max • When you find the maximum or minimum
elements of a single dlarray, the output
dlarray has the same data format as the
input dlarray.
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Function Notes and Limitations
min • When you find the maximum or minimum

elements between two formatted dlarray
inputs, the output dlarray has a combination
of both of their data formats. The function
uses implicit expansion to combine the inputs.
For more information, see “Implicit Expansion
with Data Formats” (Deep Learning Toolbox).

• The index output argument is not traced and
cannot be used with automatic differentiation.
For more information, see “Use Automatic
Differentiation In Deep Learning Toolbox”
(Deep Learning Toolbox).

round • Only the syntax Y = round(X) is supported.
• The output dlarray has the same data format

as the input dlarray.

Other Math Operations

Function Notes and Limitations
colon, : • The supported operations are:

• a:b
• a:b:c

For information on indexing into a dlarray,
see “Indexing” (Deep Learning Toolbox).

• All inputs must be real scalars. The output
dlarray is unformatted.

mtimes, * • One input can be a formatted dlarray only
when the other input is an unformatted scalar.
In this case, the output dlarray has the same
data format as the formatted dlarray input.

• Multiplying a dlarray with a non-dlarray
sparse matrix is supported only when both
inputs are non-scalar.

pagemtimes • One input can be a formatted dlarray only
when the other input is unformatted, with
scalar pages. In this case, the output dlarray
has the same data format as the formatted
dlarray input.

• For code generation, each transpose option of
pagemtimes must be constant.
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Logical Operations

Function Notes and Limitations
and, & If the two dlarray inputs are formatted, then

the output dlarray is formatted with a
combination of both of their data formats. The
function uses implicit expansion to combine the
inputs. For more information, see “Implicit
Expansion with Data Formats” (Deep Learning
Toolbox).

eq, == If the two dlarray inputs are formatted, then
the output dlarray is formatted with a
combination of both of their data formats. The
function uses implicit expansion to combine the
inputs. For more information, see “Implicit
Expansion with Data Formats” (Deep Learning
Toolbox).

ge, >=
gt, >
le, <=
lt, <
ne, ~=
or, | If the two dlarray inputs are formatted, then

the output dlarray is formatted with a
combination of both of their data formats. The
function uses implicit expansion to combine the
inputs. For more information, see “Implicit
Expansion with Data Formats” (Deep Learning
Toolbox).

xor

Size Manipulation Functions

Function Notes and Limitations
reshape The output dlarray is unformatted, even if the

input dlarray is formatted.

For code generation, the size dimensions must be
fixed size.

squeeze Two-dimensional dlarray objects are unaffected
by squeeze. If the input dlarray is formatted,
the function removes dimension labels belonging
to singleton dimensions. If the input dlarray has
more than two dimensions and its third and
above dimensions are singleton, then the function
discards these dimensions and their labels.
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Function Notes and Limitations
repelem If you use the u = repelem(v,n) syntax and

specify the number of times to repeat each
element in repelem, the output dlarray is
unformatted even if the input dlarray is
formatted.

If you use the B = repelem(A,r1,...,rN)
syntax and specify the repetition factors for each
dimension in repelem, the output dlarray has
the same data format as the input dlarray.

repmat The output dlarray has the same data format as
the input dlarray.

Transposition Operations

Function Notes and Limitations
ctranspose, ' If the input dlarray is formatted, then the labels

of both dimensions must be the same. The
function performs transposition implicitly, and
transposes directly only if necessary for other
operations.

permute If the input dlarray is formatted, then the
permutation must be among only those
dimensions that have the same label. The
function performs permutations implicitly, and
permutes directly only if necessary for other
operations.

For code generation, the dimension order must
be fixed size.

ipermute If the input dlarray is formatted, then the
permutation must be among only those
dimensions that have the same label. The
function performs permutations implicitly, and
permutes directly only if necessary for other
operations.

For code generation, the dimension order must
be fixed size.

transpose, .' If the input dlarray is formatted, then the labels
of both dimensions must be the same. The
function performs transposition implicitly, and
transposes directly only if necessary for other
operations.

4 Deep Learning

4-58



Concatenation Functions

Function Notes and Limitations
cat The dlarray inputs must have matching formats

or be unformatted. Mixed formatted and
unformatted inputs are supported. If any
dlarray inputs are formatted, then the output
dlarray is formatted with the same data format.

For code generation, the dimension order to cat
function must be fixed size.

horzcat
vertcat

Conversion Functions

Function Notes and Limitations
cast • cast(dlA,newdatatype) copies the data in

the dlarray dlA into a dlarray of the
underlying data type newdatatype. The
newdatatype option must be 'double',
'single', or 'logical'. The output
dlarray is formatted with the same data
format as dlA.

• cast(A,'like',Y) returns an array of the
same type as Y. If Y is a dlarray, then the
output is a dlarray that has the same
underlying data type as Y. If Y is on the GPU,
then the output is on the GPU. If both A and Y
are dlarray objects, then the output
dlarray is formatted with the same data
format as the input A.

double The output is a dlarray that contains data of
type double.

logical The output is a dlarray that contains data of
type logical.

single The output is a dlarray that contains data of
type single.

Comparison Functions

Function Notes and Limitations
isequal • The syntax with more than two input

arguments is not supported.
• Two dlarray inputs are equal if the numeric

data they represent are equal and if they both
are either formatted with the same data
format or unformatted.
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Function Notes and Limitations
isequaln • The syntax with more than two input

arguments is not supported.
• Two dlarray inputs are equal if the numeric

data they represent are equal (treating NaNs
as equal) and if they both are either formatted
with the same data format or unformatted.

Data Type and Value Identification Functions

Function Notes and Limitations
isfloat The software applies the function to the

underlying data of an input dlarray.islogical
isnumeric
isreal Because dlarray does not support complex

numbers, this function always returns true for a
dlarray input.

Size Identification Functions

Function Notes and Limitations
iscolumn This function returns true for a dlarray that is

a column vector, where each dimension except
the first is a singleton. For example, a 3-by-1-by-1
dlarray is a column vector.

ismatrix This function returns true for dlarray objects
with only two dimensions and for dlarray
objects where each dimension except the first
two is a singleton. For example, a 3-by-4-by-1
dlarray is a matrix.

isrow This function returns true for a dlarray that is
a row vector, where each dimension except the
second is a singleton. For example, a 1-by-3-by-1
dlarray is a row vector.

isscalar N/A
isvector This function returns true for a dlarray that is

a row vector or column vector. Note that
isvector does not consider a 1-by-1-by-3
dlarray to be a vector.

length N/A
ndims If the input dlarray dlX is formatted, then

ndims(dlX) returns the number of dimension
labels, even if some of the labeled dimensions are
trailing singleton dimensions.

numel N/A
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Function Notes and Limitations
size If the input dlarray dlX is formatted, then

size(dlX) returns a vector of length equal to
the number of dimension labels, even if some of
the labeled dimensions are trailing singleton
dimensions.

Creator Functions

Function Notes and Limitations
false Only the 'like' syntax is supported for

dlarray.inf
nan
ones
rand
true
zeros

Indexing

Code generation supports indexing dlarray objects and exhibits the following behaviors:

• If you set dlY(idx1,...,idxn) = dlX, then dlY and dlX must be assignment compatible.

• Size of the data must not change. Out-of-bounds assignment operation is not supported.
• The assignment statement cannot add or drop U labels.

• Code generation does not support deleting of parts of a dlarray object by using dlX(idx1,
…,idxn) = [].

See Also
Objects
dlarray | dlnetwork

Related Examples
• “Generate Digit Images on NVIDIA GPU Using Variational Autoencoder” on page 4-222

More About
• “dlarray Limitations for Code Generation” on page 4-62
• “Define Custom Training Loops, Loss Functions, and Networks” (Deep Learning Toolbox)
• “Train Network Using Custom Training Loop” (Deep Learning Toolbox)
• “Make Predictions Using dlnetwork Object” (Deep Learning Toolbox)
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dlarray Limitations for Code Generation
In this section...
“Recommended Usage” on page 4-62
“Limitations” on page 4-62

Recommended Usage
For code generation, use the dlarray function to create deep learning arrays. For example, suppose
you have a pretrained dlnetwork network object in the mynet.mat MAT-file. To predict the
responses for this network, create an entry-point function in MATLAB as shown in this code.

function a = foo(in)
dlIn = dlarray(in, 'SSC');

persistent dlnet;
if isempty(dlnet)
    dlnet = coder.loadDeepLearningNetwork('mynet.mat');
end

dlA = predict(dlnet, dlIn);

a = extractdata(dlA);

end

Limitations
For deep learning arrays, code generation has the following limitations:

• The data format argument of the dlarray object must be a compile-time constant. For example,

function out = foo()

dlA = dlarray(ones(5,4),'SSC'); %fmt 'SSC' is constant
 .
 .
 .
end

• The data input to the dlarray object must be fixed-size. For example, the dlarray dlA is not
supported as A is variable-sized.

function dlA = foo()

A = ones(5,4);
coder.varsize('A') %'A' is variable sized.

dlA = dlarray(A, 'SSC'); % Error: not supported.

end

• Code generation does not support creating a dlarray type object by using the coder.typeof
function with upper bound size and variable dimensions specified. For example,
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function dlA = foo()

A = dlarray(ones(5,4),'SC');
A_type = coder.typeof(A,[5 10],[1 0]); % Error: not supported.

end

Code generation supports use of coder.typeof without the size arguments. For example,

A = dlarray(ones(5,4),'SC');
A_type = coder.typeof(A);

• The code generation report does not display the size of the dlarray object. The size is always
displayed as 1x1.

• In MATLAB, dlarray enforces the order of labels 'SCBTU'. This enforcement eliminates
ambiguous semantics in operations, which implicitly match labels between inputs. This behavior is
mimicked during MEX code generation. However, for standalone code generation such as static,
dynamic libraries, or executables, the data format follows the specification of the fmt argument of
the dlarray object. As a result, if the input or output of an entry-point function is a dlarray
object and its order of labels is not 'SCBTU', then the data layout will be different between the
MATLAB environment and standalone code.

For example, consider a function foo with a dlarray object as an output.

function dlA = foo()
rng default
dlA = dlarray(rand(5,4), 'BC');
 
end

In MATLAB, dlA is 4(C)-by-5(B).

dlA = 

  4(C) × 5(B) dlarray

    0.8147    0.9058    0.1270    0.9134    0.6324
    0.0975    0.2785    0.5469    0.9575    0.9649
    0.1576    0.9706    0.9572    0.4854    0.8003
    0.1419    0.4218    0.9157    0.7922    0.9595

For standalone code generation, dlA is 5(B)-by-4(C).
• For code generation, the dlarray input to the predict method of the dlnetwork object must be

single data type.

See Also
Objects
dlarray | dlnetwork
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Related Examples
• “Generate Digit Images on NVIDIA GPU Using Variational Autoencoder” on page 4-222

More About
• “Code Generation for dlarray” on page 4-52
• “Define Custom Training Loops, Loss Functions, and Networks” (Deep Learning Toolbox)
• “Train Network Using Custom Training Loop” (Deep Learning Toolbox)
• “Make Predictions Using dlnetwork Object” (Deep Learning Toolbox)
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Generated CNN Class Hierarchy
The generated CNN code has the following class hierarchy. The Layer class and the generated
Network class have three important methods:

1 setup(), which allocates memory and system resources for each layer.
2 predict(), which performs forward inference in the execution loop.
3 cleanup(), which releases all memory and system resources.

See Also

More About
• “Supported Networks, Layers, and Classes” on page 4-6
• “Load Pretrained Networks for Code Generation” on page 4-66
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-69
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-78
• “Code Generation for Deep Learning Networks Targeting ARM Mali GPUs” on page 4-88
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Load Pretrained Networks for Code Generation
You can generate code for a pretrained convolutional neural network (CNN). To provide the network
to the code generator, load a SeriesNetwork, DAGNetwork, yolov2ObjectDetector,
ssdObjectDetector, or dlnetwork object from the trained network.

Load a Network by Using coder.loadDeepLearningNetwork
You can load a network object from any network that is supported for code generation by using
coder.loadDeepLearningNetwork. You can specify the network from a MAT-file. The MAT-file
must contain only the network to be loaded.

For example, suppose that you create a trained network object called myNet by using the
trainNetwork function. Then, you save the workspace by entering save. This creates a file called
matlab.mat that contains the network object. To load the network object myNet, enter:

net = coder.loadDeepLearningNetwork('matlab.mat');

You can also specify the network by providing the name of a function that does not accept an input
argument and returns a pretrained SeriesNetwork, DAGNetwork, yolov2ObjectDetector, or
ssdObjectDetector object, such as:

• alexnet
• darknet19
• darknet53
• densenet201
• googlenet
• inceptionv3
• inceptionresnetv2
• mobilenetv2
• nasnetlarge
• nasnetmobile
• resnet18
• resnet50
• resnet101
• squeezenet
• vgg16
• vgg19
• xception

For example, load a network object by entering:

net = coder.loadDeepLearningNetwork('googlenet');

The Deep Learning Toolbox functions in the previous list require that you install a support package
for the function. See “Pretrained Deep Neural Networks” (Deep Learning Toolbox).
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Specify a Network Object for Code Generation
If you generate code by using codegen or the app, load the network object inside of your entry-point
function by using coder.loadDeepLearningNetwork. For example:
function out = myNet_predict(in) %#codegen

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('matlab.mat');
end
out = predict(mynet,in);

For pretrained networks that are available as support package functions such as alexnet,
inceptionv3, googlenet, and resnet, you can directly specify the support package function, for
example, by writing mynet = googlenet.

Next, generate code for the entry-point function. For example:

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn'); 
codegen -args {ones(224,224,3,'single')} -config cfg myNet_predict

Specify a dlnetwork Object for Code Generation
Suppose you have a pretrained dlnetwork network object in the mynet.mat MAT-file. To predict the
responses for this network, create an entry-point function in MATLAB as shown in this code.

function a = myDLNet_predict(in)
dlIn = dlarray(in, 'SSC');

persistent dlnet;
if isempty(dlnet)
    dlnet = coder.loadDeepLearningNetwork('mynet.mat');
end

dlA = predict(dlnet, dlIn);

a = extractdata(dlA);

end

In this example, the input and output to myDLNet_predict are of simpler datatypes and the
dlarray object is created within the function. The extractdata method of the dlarray object
returns the data in the dlarray dlA as the output of myDLNet_predict. The output a has the same
data type as the underlying data type in dlA. This entry-point design has the following advantages:

• Easier integration with standalone code generation workflows such as static, dynamic libraries, or
executables.

• The data format of the output from the extractdata function has the same order ('SCBTU') in
both the MATLAB environment and the generated code.

• Improves performance for MEX workflows.
• Simplifies Simulink workflows using MATLAB Function blocks as Simulink does not natively

support dlarray objects.

Next, generate code for the entry-point function. For example:
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cfg = coder.gpuConfig('lib');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn'); 
codegen -args {ones(224,224,3,'single')} -config cfg myDLNet_predict

See Also
Functions
codegen | trainNetwork | coder.loadDeepLearningNetwork

Objects
SeriesNetwork | DAGNetwork | yolov2ObjectDetector | ssdObjectDetector | dlarray |
dlnetwork

More About
• “Supported Networks, Layers, and Classes” on page 4-6
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-69
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-78
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Code Generation for Deep Learning Networks by Using cuDNN
With GPU Coder, you can generate optimized code for prediction of a variety of trained deep learning
networks from Deep Learning Toolbox. The generated code implements the deep convolutional neural
network (CNN) by using the architecture, the layers, and parameters that you specify in the input
SeriesNetwork or DAGNetwork object. The code generator takes advantage of NVIDIA CUDA deep
neural network library (cuDNN) for NVIDIA GPUs. cuDNN is a GPU-accelerated library of primitives
for deep neural networks. The generated code can be integrated into your project as source code,
static or dynamic libraries, or executables that you can deploy to a variety of NVIDIA GPU platforms.

Generate code for convolutional networks by using one of the methods:

• The standard codegen function that generates CUDA code from a MATLAB entry-point function.
• The GPU Coder app that generates CUDA code from a MATLAB entry-point function.

Note In previous releases you could target the cuDNN library by using the cnncodegen function.
From R2021a onwards, the cnncodegen function generates C++ code and make files for only the
ARM Mali GPU processor.

Generate Code and Classify Images by Using GoogLeNet
In this example, you use GPU Coder to generate CUDA code for the pretrained googlenet deep
convolutional neural network and classify an image. GoogLeNet has been trained on over a million
images and can classify images into 1000 object categories (such as keyboard, coffee mug, pencil,
and animals). The network has learned rich feature representations for a wide range of images. The
network takes an image as input, and then outputs a label for the object in the image together with
the probabilities for each of the object categories. This example show you how to generate code for
the pretrained network by using the codegen command and the GPU Coder app.

Requirements
Required

This example generates CUDA MEX that has the following additional requirements.

1 Deep Learning Toolbox.
2 Deep Learning Toolbox Model for GoogLeNet Network support package.
3 GPU Coder Interface for Deep Learning Libraries support package.
4 CUDA enabled NVIDIA GPU and a compatible driver. For 8-bit integer precision, the CUDA GPU

must have a compute capability of 6.1 or higher.

Optional

For non-MEX builds such as static, dynamic libraries, or executables, this example has the following
additional requirements.

1 CUDA Toolkit and cuDNN libraries. For information on the supported versions of the compilers
and libraries, see “Installing Prerequisite Products”.

2 Environment variables for the compilers and libraries. For more information, see “Environment
Variables”.
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Load Pretrained Network
1 Load the pretrained GoogLeNet network. You can choose to load a different pretrained network

for image classification. If you do not have the required support packages installed, the software
provides a download link.

net = googlenet;
2 The object net contains the DAGNetwork object. Use the analyzeNetwork function to display

an interactive visualization of the network architecture, to detect errors and issues in the
network, and to display detailed information about the network layers. The layer information
includes the sizes of layer activations and learnable parameters, the total number of learnable
parameters, and the sizes of state parameters of recurrent layers.

analyzeNetwork(net);

3 The image that you want to classify must have the same size as the input size of the network. For
GoogLeNet, the size of the imageInputLayer is 224-by-224-by-3. The Classes property of the
output classificationLayer contains the names of the classes learned by the network. View
10 random class names out of the total of 1000.

classNames = net.Layers(end).Classes;
numClasses = numel(classNames);
disp(classNames(randperm(numClasses,10)))

    'speedboat'
    'window screen'
    'isopod'
    'wooden spoon'
    'lipstick'
    'drake'
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    'hyena'
    'dumbbell'
    'strawberry'
    'custard apple'

For more information, see “List of Deep Learning Layers” (Deep Learning Toolbox).

Create an Entry-Point Function
1 Write an entry-point function in MATLAB that:

a Uses the coder.loadDeepLearningNetwork function to load a deep learning model and
to construct and set up a CNN class. For more information, see “Load Pretrained Networks
for Code Generation” on page 4-66.

b Calls predict to predict the responses.
2 For example:

function out = googlenet_predict(in) %#codegen

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('googlenet');
end

% pass in input   
out = predict(mynet,in); 

A persistent object mynet loads the DAGNetwork object. At the first call to the entry-point
function, the persistent object is constructed and set up. On subsequent calls to the function, the
same object is reused to call predict on inputs, avoiding reconstructing and reloading the
network object.

Note Code generation requires the network to be loaded into a persistent object.
3 You can also use the activations method to network activations for a specific layer. For

example, the following line of code returns the network activations for the layer specified in
layerIdx.

out = activations(mynet,in,layerIdx,'OutputAs','Channels');
4 You can also use the classify method to predict class labels for the image data in in using the

trained network, mynet.

[out,scores] = classify(mynet,in);

For LSTM networks, you can also use the predictAndUpdateState and resetState methods.
For usage notes and limitations of these method, see the corresponding entry in the “Supported
Functions” on page 1-6 table.

Code Generation by Using codegen
1 To configure build settings such as output file name, location, and type, you create coder

configuration objects. To create the objects, use the coder.gpuConfig function. For example,
when generating CUDA MEX using the codegen command, use cfg =
coder.gpuConfig('mex');

Other available options are:
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a cfg = coder.gpuConfig('lib');, to create a code generation configuration object for
use with codegen when generating a CUDA C/C++ static library.

b cfg = coder.gpuConfig('dll');, to create a code generation configuration object for
use with codegen when generating a CUDA C/C++ dynamic library.

c cfg = coder.gpuConfig('exe');, to create a code generation configuration object for
use with codegen when generating a CUDA C/C++ executable.

2 To specify code generation parameters for cuDNN, set the DeepLearningConfig property to a
coder.CuDNNConfig object that you create by using coder.DeepLearningConfig.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
cfg.DeepLearningConfig.AutoTuning = true;
cfg.DeepLearningConfig.DataType = 'fp32';

Specify the precision of the inference computations in supported layers by using the DataType
property. When performing inference in 32-bit floats, use 'fp32'. For 8-bit integer, use 'int8'.
Default value is 'fp32'. INT8 precision requires a CUDA GPU with minimum compute capability
of 6.1. Use the ComputeCapability property of the GpuConfig object to set the appropriate
compute capability value.

Note Code generation for INT8 data type does not support multiple deep learning networks in
the entry-point function.

When performing inference in INT8 precision using cuDNN version 8.1.0, issues in the NVIDIA
library may cause significant degradation in performance.

3 Run the codegen command. The codegen command generates CUDA code from the
googlenet_predict.m MATLAB entry-point function.

codegen -config cfg googlenet_predict -args {ones(224,224,3)} -report

a The -report option instructs codegen to generate a code generation report that you can
use to debug your MATLAB code.

b The -args option instructs codegen to compile the file googlenet_predict.m by using
the class, size, and complexity specified for the input in. The value (224,224,3)
corresponds to input layer size of the GoogLeNet network.

c The -config option instructs codegen to use the specified configuration object for code
generation.

Note You can specify half-precision inputs for code generation. However, the code generator
type casts the inputs to single-precision. The Deep Learning Toolbox uses single-precision,
floating-point arithmetic for all computations in MATLAB.

The code generator uses column-major layout by default. To use row-major layout pass the -
rowmajor option to the codegen command. Alternatively, configure your code for row-major
layout by modifying the cfg.RowMajor parameter in the code generation configuration object.

4 When code generation is successful, you can view the resulting code generation report by
clicking View Report in the MATLAB Command Window. The report is displayed in the Report
Viewer window. If the code generator detects errors or warnings during code generation, the
report describes the issues and provides links to the problematic MATLAB code. See “Code
Generation Reports”.
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Code generation successful: View report

Generated Code

The DAG network is generated as a C++ class containing an array of 78 layer classes. The code
generator reduces the number of layers by using layer fusion optimization of convolutional and ReLU
layers. A snippet of the class declaration from googlenet_predict_types.h file is shown.

googlenet_predict_types.h File

class b_googlenet_0
{
 public:
  void presetup();
  void allocate();
  void postsetup();
  b_googlenet_0();
  void setup();
  void deallocate();
  void predict();
  void cleanup();
  real32_T *getLayerOutput(int32_T layerIndex, int32_T portIndex);
  ~b_googlenet_0();
  int32_T batchSize;
  int32_T numLayers;
  real32_T *getInputDataPointer();
  real32_T *getOutputDataPointer();
  MWCNNLayer *layers[78];
 private:
  MWTargetNetworkImpl *targetImpl;
};

• The setup() method of the class sets up handles and allocates memory for each layer of the
network object.

• The predict() method invokes prediction for each of the 78 layers in the network.
• The DeepLearningNetwork.cu file contains the definitions of the object functions for the

b_googlenet_0 class.

Binary files are exported for layers with parameters such as fully connected and convolution layers in
the network. For instance, files cnn_googlenet_conv*_w and cnn_googlenet_conv*_b
correspond to weights and bias parameters for the FusedConvReLU layers in the network. The code
generator places these binary files in the codegen folder.

By default, the generated application looks for the weight files in the codegen folder. If you are
relocating the generated application and weight files to a different location such as an embedded
board, create an environment variable called USER_DL_DATA_PATH, whose value is the location of
the relocated weight files. The generated application will then look for the weight files in this
location.

Note On Windows systems, some antivirus software such as Bit Defender can incorrectly identify
some weight files as infected and delete them. These cases are false positives and the files can be
marked as safe in your antivirus program.
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In the generated code file googlenet_predict.cu, the entry-point function
googlenet_predict() constructs a static object of b_googlenet_0 class type and invokes setup and
predict on this network object.

googlenet_predict.cu File
/* Include files */
#include "googlenet_predict.h"
#include "DeepLearningNetwork.h"
#include "predict.h"
#include "rt_nonfinite.h"

/* Variable Definitions */
static b_googlenet_0 mynet;
static boolean_T mynet_not_empty;

/* Function Definitions */
void googlenet_predict(const real_T in[150528], real32_T out[1000])
{
  if (!mynet_not_empty) {
    DeepLearningNetwork_setup(&mynet);
    mynet_not_empty = true;
  }

  DeepLearningNetwork_predict(&mynet, in, out);
}

void googlenet_predict_init()
{
  mynet_not_empty = false;
}

Generate Code by Using the App
To specify the entry-point function and specifying input types, complete the procedure in the app. See
“Code Generation by Using the GPU Coder App”.

In the Generate Code step:

1 Set the Build type to MEX.
2 Click More Settings. In the Deep Learning pane, set Target library to cuDNN.
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3 Close the settings window. To generate CUDA code, click Generate.

Generated Makefile
For 'lib', 'dll', and 'exe' targets, the code generator creates the *_rtw.mk make file in the
codegen folder. In this make file, the location of the generated code is specified by using the
START_DIR variable found in the MACROS section. By default, this variable points to the path of the
current working folder where the code is generated. If you plan to move the generated files and use
the makefile to build, replace the generated value of START_DIR with the appropriate path location.

Run the Generated MEX
1 The image that you want to classify must have the same size as the input size of the network.

Read the image that you want to classify and resize it to the input size of the network. This
resizing slightly changes the aspect ratio of the image.

im = imread("peppers.png");
inputLayerSize = net.Layers(1).InputSize;
im = imresize(im,inputLayerSize(1:2));

2 Call GoogLeNet predict on the input image.

predict_scores = googlenet_predict_mex(im);
3 Display the top five predicted labels and their associated probabilities as a histogram. Because

the network classifies images into so many object categories, and many categories are similar, it
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is common to consider the top-five accuracy when evaluating networks. The network classifies
the image as a bell pepper with a high probability.

[scores,indx] = sort(predict_scores, 'descend');
classNamesTop = classNames(indx(1:5));

h = figure;
h.Position(3) = 2*h.Position(3);
ax1 = subplot(1,2,1);
ax2 = subplot(1,2,2);

image(ax1,im);
barh(ax2,scores(5:-1:1))
xlabel(ax2,'Probability')
yticklabels(ax2,classNamesTop(5:-1:1))
ax2.YAxisLocation = 'right';
sgtitle('Top 5 predictions using GoogLeNet')

See Also
Functions
coder.loadDeepLearningNetwork | codegen | coder.DeepLearningConfig

Objects
coder.gpuConfig | coder.CodeConfig | coder.EmbeddedCodeConfig | coder.CuDNNConfig

See Also

More About
• “Supported Networks, Layers, and Classes” on page 4-6
• “Load Pretrained Networks for Code Generation” on page 4-66
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-78
• “Deployment and Classification of Webcam Images on NVIDIA Jetson TX2 Platform” on page 5-

44
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• “Generated CNN Class Hierarchy” on page 4-65
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Code Generation for Deep Learning Networks by Using
TensorRT

With GPU Coder, you can generate optimized code for prediction of a variety of trained deep learning
networks from Deep Learning Toolbox. The generated code implements the deep convolutional neural
network (CNN) by using the architecture, the layers, and parameters that you specify in the input
SeriesNetwork or DAGNetwork object. You can configure the code generator to take advantage of
the NVIDIA TensorRT high performance inference library for NVIDIA GPUs. TensorRT provides
improved latency, throughput, and memory efficiency by combining network layers and optimizing
kernel selection. You can also configure the code generator to take advantage TensorRT's precision
modes (FP32, FP16, or INT8) to further improve performance and reduce memory requirements. The
generated code can be integrated into your project as source code, static or dynamic libraries, or
executables that you can deploy to a variety of NVIDIA GPU platforms.

Note The TensorRT work flow is not supported on MATLAB Online™.

Generate code for convolutional networks by using one of the methods:

• The standard codegen function that generates CUDA code from a MATLAB entry-point function.
• The GPU Coder app that generates CUDA code from a MATLAB entry-point function.

Note In previous releases you could target the TensorRT library by using the cnncodegen function.
From R2021a onwards, the cnncodegen function generates C++ code and make files for only the
ARM Mali GPU processor.

Generate Code and Classify Images by Using GoogLeNet
In this example, you use GPU Coder to generate CUDA code for the pretrained googlenet deep
convolutional neural network and classify an image. GoogLeNet has been trained on over a million
images and can classify images into 1000 object categories (such as keyboard, coffee mug, pencil,
and animals). The network has learned rich feature representations for a wide range of images. The
network takes an image as input, and then outputs a label for the object in the image with the
probabilities for each of the object categories. This example show you how to generate code for the
pretrained network by using the codegen command and the GPU Coder app.

This example uses 32-bit floats (default value) as the precision for the tensor inputs. To learn more
about using 8-bit integer precision for the tensors, see the “Deep Learning Prediction with NVIDIA
TensorRT Library” on page 4-145 example.

Requirements
Required

This example generates CUDA MEX that has the following additional requirements.

1 Deep Learning Toolbox.
2 Deep Learning Toolbox Model for GoogLeNet Network support package.
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3 GPU Coder Interface for Deep Learning Libraries support package.
4 CUDA enabled NVIDIA GPU and a compatible driver. For 8-bit integer precision, the CUDA GPU

must have a compute capability of 6.1, 7.0 or higher. Half-precision requires a CUDA GPU with
minimum compute capability of 5.3, 6.0, 6.2 or higher.

Optional

For non-MEX builds such as static, dynamic libraries, or executables, this example has the following
additional requirements.

1 CUDA Toolkit, cuDNN, and TensorRT libraries. For information on the supported versions of the
compilers and libraries, see “Installing Prerequisite Products”.

2 Environment variables for the compilers and libraries. For more information, see “Environment
Variables”.

Load Pretrained Network
1 Load the pretrained GoogLeNet network. You can choose to load a different pretrained network

for image classification. If you do not have the required support packages installed, the software
provides a download link.

net = googlenet;
2 The object net contains the DAGNetwork object. Use the analyzeNetwork function to display

an interactive visualization of the network architecture, to detect errors and issues in the
network, and to display detailed information about the network layers. The layer information
includes the sizes of layer activations and learnable parameters, the total number of learnable
parameters, and the sizes of state parameters of recurrent layers.

analyzeNetwork(net);
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3 The image that you want to classify must have the same size as the input size of the network. For
GoogLeNet, the size of the imageInputLayer is 224-by-224-by-3. The Classes property of the
output classificationLayer contains the names of the classes learned by the network. View
10 random class names out of the total of 1000.

classNames = net.Layers(end).Classes;
numClasses = numel(classNames);
disp(classNames(randperm(numClasses,10)))

    'speedboat'
    'window screen'
    'isopod'
    'wooden spoon'
    'lipstick'
    'drake'
    'hyena'
    'dumbbell'
    'strawberry'
    'custard apple'

For more information, see “List of Deep Learning Layers” (Deep Learning Toolbox).

Create an Entry-Point Function
1 Write an entry-point function in MATLAB that:

a Uses the coder.loadDeepLearningNetwork function to load a deep learning model and
to construct and set up a CNN class. For more information, see “Load Pretrained Networks
for Code Generation” on page 4-66.
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b Calls predict to predict the responses.
2 For example:

function out = googlenet_predict(in) %#codegen

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('googlenet');
end

% pass in input   
out = predict(mynet,in); 

A persistent object mynet loads the DAGNetwork object. At the first call to the entry-point
function, the persistent object is constructed and set up. On subsequent calls to the function, the
same object is reused to call predict on inputs, avoiding reconstructing and reloading the
network object.

Note Code generation requires the network to be loaded into a persistent object.
3 You can also use the activations method to network activations for a specific layer. For

example, the following line of code returns the network activations for the layer specified in
layerIdx.

out = activations(mynet,in,layerIdx,'OutputAs','Channels');
4 You can also use the classify method to predict class labels for the image data in in using the

trained network, mynet.

[out,scores] = classify(mynet,in);

For LSTM networks, you can also use the predictAndUpdateState and resetState methods.
For usage notes and limitations of these method, see the corresponding entry in the “Supported
Functions” on page 1-6 table.

Code Generation by Using codegen
1 To configure build settings such as output file name, location, and type, you create coder

configuration objects. To create the objects, use the coder.gpuConfig function. For example,
when generating CUDA MEX by using the codegen command, use cfg =
coder.gpuConfig('mex');

Other available options are:

a cfg = coder.gpuConfig('lib');, to create a code generation configuration object for
use with codegen when generating a CUDA C/C++ static library.

b cfg = coder.gpuConfig('dll');, to create a code generation configuration object for
use with codegen when generating a CUDA C/C++ dynamic library.

c cfg = coder.gpuConfig('exe');, to create a code generation configuration object for
use with codegen when generating a CUDA C/C++ executable.

2 To specify code generation parameters for TensorRT, set the DeepLearningConfig property to
a coder.TensorRTConfig object that you create by using coder.DeepLearningConfig.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('tensorrt');
cfg.DeepLearningConfig.DataType = 'fp32';
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Specify the precision of the inference computations in supported layers by using the DataType
property. When performing inference in 32-bit floats, use 'fp32'. For half-precision, use
'fp16'. For 8-bit integer, use 'int8'. Default value is 'fp32'. INT8 precision requires a CUDA
GPU with a compute capability of 6.1, 7.0, or higher. FP16 precision requires a CUDA GPU with a
compute capability of 5.3, 6.0, 6.2, or higher. Use the ComputeCapability property of the
GpuConfig object to set the appropriate compute capability value.

When you select the 'INT8' option, TensorRT quantizes the floating-point data to int8. The
calibration is performed with a reduced set of the calibration data. The calibration data must be
present in the image data location specified by DataPath. Preprocessing of the images must be
performed before calibration and the preprocessing steps must be included in the entry-point file
before code generation.

Code generation by using the NVIDIA TensorRT Library with inference computation in 8-bit
integer precision supports these additional networks:

• Object detector networks such as YOLOv2 and SSD.
• Regression and semantic segmentation networks. For semantic segmentation networks, the

recalibration images must be in a format supported by the imread function.

See the “Deep Learning Prediction with NVIDIA TensorRT Library” on page 4-145 example for 8-
bit integer prediction for a logo classification network by using TensorRT.

3 Run the codegen command. The codegen command generates CUDA code from the
googlenet_predict.m MATLAB entry-point function.

codegen -config cfg googlenet_predict -args {ones(224,224,3)} -report

a The -report option instructs codegen to generate a code generation report that you can
use to debug your MATLAB code.

b The -args option instructs codegen to compile the file googlenet_predict.m by using
the class, size, and complexity specified for the input in. The value (224,224,3)
corresponds to the input layer size of the GoogLeNet network.

c The -config option instructs codegen to use the specified configuration object for code
generation.

Note You can specify half-precision inputs for code generation. However, the code generator
type casts the inputs to single-precision. The Deep Learning Toolbox uses single-precision,
floating-point arithmetic for all computations in MATLAB. During code generation, you can
enable inference with half-precision (16-bit floating-point) inputs by specifying the DataType
property of coder.TensorRTConfig as 'fp16'.

The code generator uses column-major layout by default. To use row-major layout pass the -
rowmajor option to the codegen command. Alternatively, configure your code for row-major
layout by modifying the cfg.RowMajor parameter in the code generation configuration object.

4 When code generation is successful, you can view the resulting code generation report by
clicking View Report in the MATLAB Command Window. The report is displayed in the Report
Viewer window. If the code generator detects errors or warnings during code generation, the
report describes the issues and provides links to the problematic MATLAB code. See “Code
Generation Reports”.

Code generation successful: View report
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Generated Code

The DAG network is generated as a C++ class containing an array of 144 layer classes. A snippet of
the class declaration from googlenet_predict_types.h file is shown.

googlenet_predict_types.h File

class b_googlenet_0
{
 public:
  void presetup();
  void allocate();
  void postsetup();
  b_googlenet_0();
  void setup();
  void deallocate();
  void predict();
  void cleanup();
  real32_T *getLayerOutput(int32_T layerIndex, int32_T portIndex);
  ~b_googlenet_0();
  int32_T batchSize;
  int32_T numLayers;
  real32_T *getInputDataPointer();
  real32_T *getOutputDataPointer();
  MWCNNLayer *layers[144];
 private:
  MWTargetNetworkImpl *targetImpl;
};

• The setup() method of the class sets up handles and allocates memory for each layer of the
network object.

• The predict() method invokes prediction for each of the 144 layers in the network.
• The DeepLearningNetwork.cu file contains the definitions of the object functions for the

b_googlenet_0 class.

Binary files are exported for layers with parameters such as fully connected and convolution layers in
the network. For instance, files cnn_googlenet_conv*_w and cnn_googlenet_conv*_b
correspond to weights and bias parameters for the convolutional layers in the network. The code
generator places these binary files in the codegen folder.

By default, the generated application looks for the weight files in the codegen folder. If you are
relocating the generated application and weight files to a different location such as an embedded
board, create an environment variable called USER_DL_DATA_PATH, whose value is the location of
the relocated weight files. The generated application will then look for the weight files in this
location.

Note On Windows systems, some antivirus software such as Bit Defender can incorrectly identify
some weight files as infected and delete them. These cases are false positives and the files can be
marked as safe in your antivirus program.

In the generated code file googlenet_predict.cu, the entry-point function
googlenet_predict() constructs a static object of b_googlenet_0 class type and invokes setup and
predict on this network object.
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googlenet_predict.cu File
/* Include files */
#include "googlenet_predict.h"
#include "DeepLearningNetwork.h"
#include "predict.h"
#include "rt_nonfinite.h"

/* Variable Definitions */
static b_googlenet_0 mynet;
static boolean_T mynet_not_empty;

/* Function Definitions */
void googlenet_predict(const real_T in[150528], real32_T out[1000])
{
  if (!mynet_not_empty) {
    DeepLearningNetwork_setup(&mynet);
    mynet_not_empty = true;
  }

  DeepLearningNetwork_predict(&mynet, in, out);
}

void googlenet_predict_init()
{
  mynet_not_empty = false;
}

Generate Code by Using the App
To specify the entry-point function and specifying input types, complete the procedure in the app. See
“Code Generation by Using the GPU Coder App”.

In the Generate Code step:

1 Set the Build type to MEX.
2 Click More Settings. In the Deep Learning pane, set Target library to TensorRT.
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3 Close the settings window. To generate CUDA code, click Generate.

Generated Makefile
For 'lib', 'dll', and 'exe' targets, the code generator creates the *_rtw.mk make file in the
codegen folder. In this make file, the location of the generated code is specified by using the
START_DIR variable found in the MACROS section. By default, this variable points to the path of the
current working folder where the code is generated. If you plan to move the generated files and use
the makefile to build, replace the generated value of START_DIR with the appropriate path location.

Run the Generated MEX
1 The image that you want to classify must have the same size as the input size of the network.

Read the image that you want to classify and resize it to the input size of the network. This
resizing slightly changes the aspect ratio of the image.

im = imread("peppers.png");
inputLayerSize = net.Layers(1).InputSize;
im = imresize(im,inputLayerSize(1:2));

2 Call GoogLeNet predict on the input image.

predict_scores = googlenet_predict_mex(im);
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3 Display the top five predicted labels and their associated probabilities as a histogram. Because
the network classifies images into so many object categories, and many categories are similar, it
is common to consider the top-five accuracy when evaluating networks. The network classifies
the image as a bell pepper with a high probability.

[scores,indx] = sort(predict_scores, 'descend');
classNamesTop = classNames(indx(1:5));

h = figure;
h.Position(3) = 2*h.Position(3);
ax1 = subplot(1,2,1);
ax2 = subplot(1,2,2);

image(ax1,im);
barh(ax2,scores(5:-1:1))
xlabel(ax2,'Probability')
yticklabels(ax2,classNamesTop(5:-1:1))
ax2.YAxisLocation = 'right';
sgtitle('Top 5 predictions using GoogLeNet')

See Also
Functions
coder.loadDeepLearningNetwork | codegen | coder.DeepLearningConfig

Objects
coder.gpuConfig | coder.CodeConfig | coder.EmbeddedCodeConfig |
coder.TensorRTConfig

See Also

More About
• “Supported Networks, Layers, and Classes” on page 4-6
• “Load Pretrained Networks for Code Generation” on page 4-66
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• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-69
• “Deep Learning Prediction with NVIDIA TensorRT Library” on page 4-145
• “Code Generation for Deep Learning Networks” on page 4-117
• “Code Generation for Object Detection by Using YOLO v2” on page 4-180
• “Deployment and Classification of Webcam Images on NVIDIA Jetson TX2 Platform” on page 5-

44
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Code Generation for Deep Learning Networks Targeting ARM
Mali GPUs

With GPU Coder, you can generate optimized code for prediction of a variety of trained deep learning
networks from Deep Learning Toolbox. The generated code implements the deep convolutional neural
network (CNN) by using the architecture, the layers, and parameters that you specify in the input
SeriesNetwork or DAGNetwork object. The code generator takes advantage of the ARM Compute
Library for computer vision and machine learning. For performing deep learning on ARM Mali GPU
targets, you generate code on the host development computer. Then, to build and run the executable
program move the generated code to the ARM target platform. For example, HiKey960 is one of the
target platforms that can execute the generated code.

Requirements
1 Deep Learning Toolbox.
2 Deep Learning Toolbox Model for MobileNet-v2 Network support package.
3 GPU Coder Interface for Deep Learning Libraries support package. To install the support

packages, select the support package from the MATLAB Add-Ons menu.
4 ARM Compute Library for computer vision and machine learning must be installed on the target

hardware. For information on the supported versions of the compilers and libraries, see
“Installing Prerequisite Products”.

5 Environment variables for the compilers and libraries. For more information, see “Environment
Variables”.

Load Pretrained Network
1 Load the pretrained MobileNet-v2 network. You can choose to load a different pretrained

network for image classification. If you do not have the required support packages installed, the
software provides a download link.

net = mobilenetv2;
2 The object net contains the DAGNetwork object. Use the analyzeNetwork function to display

an interactive visualization of the network architecture, to detect errors and issues in the
network, and to display detailed information about the network layers. The layer information
includes the sizes of layer activations and learnable parameters, the total number of learnable
parameters, and the sizes of state parameters of recurrent layers.

analyzeNetwork(net);
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3 The image that you want to classify must have the same size as the input size of the network. For
GoogLeNet, the size of the imageInputLayer is 224-by-224-by-3. The Classes property of the
output classificationLayer contains the names of the classes learned by the network. View
10 random class names out of the total of 1000.

classNames = net.Layers(end).Classes;
numClasses = numel(classNames);
disp(classNames(randperm(numClasses,10)))

     cock 
     apiary 
     soap dispenser 
     titi 
     car wheel 
     guenon 
     muzzle 
     agaric 
     buckeye 
     megalith 

For more information, see “List of Deep Learning Layers” (Deep Learning Toolbox).

Code Generation by Using cnncodegen
To generate code with the ARM Compute Library, use the targetlib option of the cnncodegen
command. The cnncodegen command generates C++ code for the SeriesNetwork or DAGNetwork
network object.

 Code Generation for Deep Learning Networks Targeting ARM Mali GPUs

4-89



1 Call cnncodegen with 'targetlib' specified as 'arm-compute-mali'. For example:

net = googlenet;
cnncodegen(net,'targetlib','arm-compute-mali','batchsize',1);

For 'arm-compute-mali', the value of batchsize must be 1.

The 'targetparams' name-value pair arguments that enable you to specify Library-specific
parameters for the ARM Compute Library is not applicable when targeting ARM Mali GPUs.

2 The cnncodegen command generates code, a makefile, cnnbuild_rtw.mk, and other
supporting files to build the generated code on the target hardware. The command places all the
generated files in the codegen folder.

3 Write a C++ main function that calls predict. For an example main file that interfaces with the
generated code, see “Deep Learning Prediction on ARM Mali GPU” on page 4-190

4 Move the generated codegen folder and other files from the host development computer to the
ARM hardware by using your preferred Secure File Copy (SCP) and Secure Shell (SSH) client.
Build the executable program on the target.

Generated Code

The DAG network is generated as a C++ class (CnnMain) containing an array of 103 layer classes.
The code generator reduces the number of layers is by layer fusion optimization of convolutional and
batch normalization layers. A snippet of the class declaration from cnn_exec.hpp file is shown.

cnn_exec.hpp File

class CnnMain
{
  public:
    int32_T numLayers;
  private:
    MWTensorBase *inputTensors[1];
    MWTensorBase *outputTensors[1];
  public:
    MWCNNLayer *layers[103];
  private:
    MWTargetNetworkImpl *targetImpl;
    void allocate();
    void postsetup();
  public:
    CnnMain();
  private:
    void deallocate();
  public:
    void setup();
    void predict();
    void cleanup();
    real32_T *getLayerOutput(int32_T layerIndex, int32_T portIndex);
    real32_T *getInputDataPointer(int32_T index);
    real32_T *getInputDataPointer();
    real32_T *getOutputDataPointer(int32_T index);
    real32_T *getOutputDataPointer();
    int32_T getBatchSize();
    ~CnnMain();
};

4 Deep Learning

4-90



• The setup() method of the class sets up handles and allocates memory for each layer of the
network object.

• The predict() method invokes prediction for each of the 103 layers in the network.
• The cnn_exec.cpp file contains the definitions of the object functions for the CnnMain class.

Binary files are exported for layers with parameters such as fully connected and convolution layers in
the network. For instance, files cnn_CnnMain_Conv*_w and cnn_CnnMain_Conv*_b correspond to
weights and bias parameters for the convolutional layers in the network. The code generator
places these binary files in the codegen folder. The code generator builds the library file cnnbuild
and places all the generated files in the codegen folder.

Limitations
• Code generation for the ARM Mali GPU is not supported for a 2-D grouped convolution layer that

has the NumGroups property set as 'channel-wise' or a value greater than two.

See Also
Functions
coder.getDeepLearningLayers | cnncodegen | coder.DeepLearningConfig

More About
• “Supported Networks, Layers, and Classes” on page 4-6
• “Load Pretrained Networks for Code Generation” on page 4-66
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-69
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-78
• “Deep Learning Prediction on ARM Mali GPU” on page 4-190
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Update Network Parameters After Code Generation
In this section...
“Create an Entry-Point Function” on page 4-92
“Create a Network” on page 4-92
“Code Generation by Using codegen” on page 4-93
“Run the Generated MEX” on page 4-93
“Update Network with Different Learnable Parameters” on page 4-94
“Run the Generated MEX with Updated Learnables” on page 4-94
“Limitations” on page 4-95

This example shows how to update learnable and state parameters of deep learning networks without
regenerating code for the network. You can update the network parameters for SeriesNetwork,
DAGNetwork and dlnetwork.

Parameter update supports MEX and standalone code generation for the NVIDIA CUDA deep neural
network library (cuDNN) and the NVIDIA TensorRT high performance inference libraries.

Create an Entry-Point Function
1 Write an entry-point function in MATLAB that:

a Uses the coder.loadDeepLearningNetwork function to load a deep learning model. For
more information, see “Load Pretrained Networks for Code Generation” on page 4-66.

b Calls predict to predict the responses.
2 For example:

function out = mLayer(in, matFile)

myNet = coder.loadDeepLearningNetwork(coder.const(matFile));

out = myNet.predict(in); 

Create a Network
The network used in this example requires input images of size 4-by-5-by-3. Create sample network
inputs of the same size format as the network inputs.

inputSize = [4 5 3];
im = dlarray(rand(inputSize, 'single'), 'SSCB');

Define the network architecture.

outSize = 6;
layers = [
    imageInputLayer(inputSize,'Name','input','Normalization','none')
    convolution2dLayer([3 3], 5, 'Name', 'conv-1')
    batchNormalizationLayer('Name', 'batchNorm')
    reluLayer('Name','relu1')
    transposedConv2dLayer([2 2], 5, 'Name', 'transconv')
    convolution2dLayer([2 2], 5, 'Name', 'conv2')
    reluLayer('Name','relu2')

4 Deep Learning

4-92



    fullyConnectedLayer(outSize, 'Name', 'fc3')
    ];

Create an initialized dlnetwork object from the layer graph.

rng(0);
dlnet1 = dlnetwork(layers);
save('trainedNet.mat', 'dlnet1');

Code Generation by Using codegen
1 To configure build settings such as output file name, location, and type, you create coder

configuration objects. To create the objects, use the coder.gpuConfig function.
2 To specify code generation parameters for cuDNN, set the DeepLearningConfig property to a

coder.CuDNNConfig object that you create by using coder.DeepLearningConfig.
cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('TargetLibrary', 'cudnn')
cfg.DeepLearningConfig.AutoTuning = true;
cfg.DeepLearningConfig.DataType = 'fp32';

3 Specify the inputs.

cnnMatFile = fullfile(pwd, 'trainedNet.mat');
inputArgs = {im, coder.Constant(cnnMatFile)};

4 Run the codegen command. The codegen command generates CUDA code from the mLayers.m
MATLAB entry-point function.

codegen -config cfg mLayer -args inputArgs -report

Run the Generated MEX
Call predict on the input image and compare the results with MATLAB.

out = mLayer_mex(im,cnnMatFile)
out_MATLAB = mLayer(im,cnnMatFile)

out1 = 

  6(C) x 1(B) single dlarray

   -0.0064
   -0.1422
   -0.0897
    0.2223
    0.0329
    0.0365

out_MATLAB = 

  6(C) x 1(B) single dlarray

   -0.0064
   -0.1422
   -0.0897
    0.2223
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    0.0329
    0.0365

Update Network with Different Learnable Parameters
Re-initialize dlnetwork to update learnables to different values.

rng(10);
dlnet2 = dlnetwork(layers);
save('trainedNet.mat', 'dlnet2');

Use the coder.regenerateDeepLearningParameters function to regenerate the bias files based
on the new learnables and states of the network.

The first input to the coder.regenerateDeepLearningParameters function is a
SeriesNetwork, DAGNetwork or dlnetwork object. The second argument is the path to the
network parameter information file emitted during code generation. You can optionally specify the
NetworkName=MYNET name-value pair to specify the name of the C++ class for the network in the
generated code.

codegenDir = fullfile(pwd, 'codegen/mex/mLayer');
networkFileNames = (coder.regenerateDeepLearningParameters(dlnet2, codegenDir))'

The coder.regenerateDeepLearningParameters function returns a cell-array of files containing
network learnables and states.

networkFileNames = 

  8×1 cell array

    {'cnn_trainedNet0_0_conv-1_b.bin'   }
    {'cnn_trainedNet0_0_conv-1_w.bin'   }
    {'cnn_trainedNet0_0_conv2_b.bin'    }
    {'cnn_trainedNet0_0_conv2_w.bin'    }
    {'cnn_trainedNet0_0_fc3_b.bin'      }
    {'cnn_trainedNet0_0_fc3_w.bin'      }
    {'cnn_trainedNet0_0_transconv_b.bin'}
    {'cnn_trainedNet0_0_transconv_w.bin'}

Note For MEX workflows, when the generated MEX and the associated codegen folder is moved
from one location to another, coder.regenerateDeepLearningParameters cannot regenerate
files containing network learnables and states parameters in the new location. Set the
'OverrideParameterFiles' parameter of coder.regenerateDeepLearningParameters to
true to allow the coder.regenerateDeepLearningParameters function to regenerate files
containing network learnables and states parameters in the original codegen location.

For standalone workflows, coder.regenerateDeepLearningParameters can regenerate files
containing network learnables and states parameters in the new location

Run the Generated MEX with Updated Learnables
Call predict on the input image and compare the results with MATLAB.

clear mLayer_mex;
outNew = mLayer_mex(im,cnnMatFile)
outNew_MATLAB = mLayer(im,cnnMatFile)
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outNew = 

  6(C) x 1(B) single dlarray

    0.1408
   -0.0080
    0.0342
   -0.0065
    0.1843
    0.0799

outNew_MATLAB = 

  6(C) x 1(B) single dlarray

    0.1408
   -0.0080
    0.0342
   -0.0065
    0.1843
    0.0799

Limitations

Only the network learnables and states can be updated by using the
coder.regenerateDeepLearningParameters function. For modifications that the code generator
does not support, an error message is thrown. For example, using
coder.regenerateDeepLearningParameters after changing the scale factor of a leaky ReLU
layer throws the following error message as scale factor is not a network learnable.
Network architecture has been modified since the last code generation. Unable 
to accommodate the provided network in the generated code. Regenerate code 
for the provided network to reflect changes in the network. For more 
information, see Limitations to Regenerating Network Parameters After Code Generation.

See Also
Functions
codegen | coder.loadDeepLearningNetwork | coder.regenerateDeepLearningParameters

Objects
SeriesNetwork | DAGNetwork | dlarray | dlnetwork

More About
• “Supported Networks, Layers, and Classes” on page 4-6
• “Load Pretrained Networks for Code Generation” on page 4-66
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-69
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-78
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Data Layout Considerations in Deep Learning
When you build an application that uses the generated CUDA C++ code, you must provide a CUDA C
++ main function that calls the generated code. By default, for code generation of source code, static
libraries, dynamic libraries, and executables by using the codegen command, GPU Coder generates
example CUDA C++ main files (main.cu source file and main.h header file in the examples
subfolder of the build folder). This example main file is a template that helps you incorporate
generated CUDA code into your application. The example main function declares and initializes data,
including dynamically allocated data. It calls entry-point functions but does not use values that the
entry point functions return.

When generating code for deep convolutional neural networks (CNN), the code generator takes
advantage of NVIDIA cuDNN, TensorRT for NVIDIA GPUs or the ARM Compute Library for the ARM
Mali GPUs. These libraries have specific data layout requirements for the input tensor holding
images, video, and any other data. When authoring custom main functions for building an application,
you must create input buffers that provide data to the generated entry-point functions in the format
expected by these libraries.

Data Layout Format for CNN
For deep convolutional neural networks (CNN), a 4-D tensor descriptor is used to define the format
for batches of 2-D images with the following letters:

• N – the batch size
• C – the number of feature maps (number of channels)
• H – the height
• W – the width

The most commonly used 4-D tensor formats is shown, where the letters are sorted in decreasing
order of the strides.

• NCHW
• NHWC
• CHWN

Of these, GPU Coder uses the NCHW format (column-major layout by default). To use row-major layout
pass the -rowmajor option to the codegen command. Alternatively, configure your code for row-
major layout by modifying the cfg.RowMajor parameter in the code generation configuration object.

For example, consider a batch of images with the following dimensions: N=1, C=3, H=5, W=4. If the
image pixel elements are represented by a sequence of integers, the input images can be pictorially
represented as follows.
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When creating the input buffer in the main function, the 4-D image is laid out in the memory in the
NCHW format as:

1 Beginning with the first channel (C=0), the elements are arranged contiguously in row-major
order.

2 Continue with second and subsequent channels until the elements of all the channels are laid out.
3 Proceed to the next batch (if N > 1).

Data Layout Format for LSTM
A long short-term memory (LSTM) network is a type of recurrent neural network (RNN) that can
learn long-term dependencies between time steps of sequence data. For LSTM, the data layout format
can be described with the following letters:

• N – the batch size
• S – the sequence length (number of time steps)
• d – the number of units in one input sequence
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For LSTM, GPU Coder uses the SNd format by default.

See Also
Functions
coder.getDeepLearningLayers | codegen | coder.DeepLearningConfig

Objects
coder.gpuConfig | coder.CodeConfig | coder.EmbeddedCodeConfig | coder.gpuEnvConfig
| coder.CuDNNConfig | coder.TensorRTConfig

More About
• “Supported Networks, Layers, and Classes” on page 4-6
• “Load Pretrained Networks for Code Generation” on page 4-66
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-69
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-78
• “Code Generation for Deep Learning Networks Targeting ARM Mali GPUs” on page 4-88
• “Lane Detection Optimized with GPU Coder” on page 4-124
• “Deployment and Classification of Webcam Images on NVIDIA Jetson TX2 Platform” on page 5-

44
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Quantization of Deep Neural Networks

In digital hardware, numbers are stored in binary words. A binary word is a fixed-length sequence of
bits (1's and 0's). The data type defines how hardware components or software functions interpret
this sequence of 1's and 0's. Numbers are represented as either scaled integer (usually referred to as
fixed-point) or floating-point data types.

Most pretrained neural networks and neural networks trained using Deep Learning Toolbox use
single-precision floating point data types. Even small trained neural networks require a considerable
amount of memory, and require hardware that can perform floating-point arithmetic. These
restrictions can inhibit deployment of deep learning capabilities to low-power microcontrollers and
FPGAs.

Using the Deep Learning Toolbox Model Quantization Library support package, you can quantize a
network to use 8-bit scaled integer data types.

To learn about the products required to quantize and deploy the deep learning network to a GPU,
FPGA, or CPU environment, see “Quantization Workflow Prerequisites” (Deep Learning Toolbox).

Precision and Range
Scaled 8-bit integer data types have limited precision and range when compared to single-precision
floating point data types. There are several numerical considerations when casting a number from a
larger floating-point data type to a smaller data type of fixed length.

• Precision loss: Precision loss is a rounding error. When precision loss occurs, the value is rounded
to the nearest number that is representable by the data type. In the case of a tie it rounds:

• Positive numbers to the closest representable value in the direction of positive infinity.
• Negative numbers to the closest representable value in the direction of negative infinity.

In MATLAB you can perform this type of rounding using the round function.
• Underflow: Underflow is a type of precision loss. Underflows occur when the value is smaller than

the smallest value representable by the data type. When this occurs, the value saturates to zero.
• Overflow: When a value is larger than the largest value that a data type can represent, an
overflow occurs. When an overflow occurs, the value saturates to the largest value representable
by the data type.

Histograms of Dynamic Ranges
Use the Deep Network Quantizer app to collect and visualize the dynamic ranges of the weights
and biases of the convolution layers and fully connected layers of a network, and the activations of all
layers in the network. The app assigns a scaled 8-bit integer data type for the weights, biases, and
activations of the convolution layers of the network. The app displays a histogram of the dynamic
range for each of these parameters. The following steps describe how these histograms are produced.

1 Consider the following values logged for a parameter while exercising a network.
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2 Find the ideal binary representation of each logged value of the parameter.

The most significant bit (MSB) is the left-most bit of the binary word. This bit contributes most to
the value of the number. The MSB for each value is highlighted in yellow.
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3 By aligning the binary words, you can see the distribution of bits used by the logged values of a
parameter. The sum of MSB's in each column, highlighted in green, give an aggregate view of the
logged values.
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4 The MSB counts of each bit location are displayed as a heat map. In this heat map, darker blue
regions correspond to a larger number of MSB's in the bit location.
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5 The Deep Network Quantizer app assigns a data type that can avoid overflow, cover the range,
and allow underflow. An additional sign bit is required to represent the signedness of the value.

The figure below shows an example of a data type that represents bits from 23 to 2-3, including
the sign bit.

6 After assigning the data type, any bits outside of that data type are removed. Due to the
assignment of a smaller data type of fixed length, precision loss, overflow, and underflow can
occur for values that are not representable by the data type.
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In this example, the value 0.03125, suffers from an underflow, so the quantized value is 0. The
value 2.1 suffers some precision loss, so the quantized value is 2.125. The value 16.250 is larger
than the largest representable value of the data type, so this value overflows and the quantized
value saturates to 15.874.
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7 The Deep Network Quantizer app displays this heat map histogram for each learnable
parameter in the convolution layers and fully connected layers of the network. The gray regions
of the histogram show the bits that cannot be represented by the data type.
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See Also
Apps
Deep Network Quantizer

Functions
calibrate | validate | dlquantizer | dlquantizationOptions

More About
• “Generate INT8 Code for Deep Learning Networks” on page 4-107
• “Quantize Residual Network Trained for Image Classification and Generate CUDA Code” on

page 4-229
• “Quantize Layers in Object Detectors and Generate CUDA Code” on page 4-237
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Generate INT8 Code for Deep Learning Networks
Deep learning uses neural network architectures that contain many processing layers, including
convolutional layers. Deep learning models typically work on large sets of labeled data. Training
these models and performing inference is computationally intensive, consuming significant amount of
memory. Neural networks use memory to store input data, parameters (weights), and activations from
each layer as the input propagates through the network. The majority of the pretrained neural
networks and neural networks trained by using Deep Learning Toolbox use single-precision floating
point data types. Even networks that are small in size require a considerable amount of memory and
hardware to perform these floating-point arithmetic operations. These restrictions can inhibit
deployment of deep learning models to devices that have low computational power and smaller
memory resources. By using a lower precision to store the weights and activations, you can reduce
the memory requirements of the network.

You can use Deep Learning Toolbox in tandem with the Deep Learning Toolbox Model Quantization
Library support package to reduce the memory footprint of a deep neural network by quantizing the
weights, biases, and activations of convolution layers to 8-bit scaled integer data types. Then, you can
use GPU Coder to generate CUDA code for the optimized network. The generated code takes
advantage of NVIDIA CUDA deep neural network library (cuDNN) or the TensorRT high performance
inference library. the generated code can be integrated into your project as source code, static or
dynamic libraries, or executables that you can deploy to a variety of NVIDIA GPU platforms.

Classify Images Using a Network Optimized for INT8 Inference

This example was previously named 'Classify Images on a GPU Using a Quantized Network' but
renamed in R2022a to avoid confusion with quantized network objects created by the quantize
(Deep Learning Toolbox) function. Code generation does not support quantized deep neural networks
produced by the quantize function.

In this example, you use GPU Coder to generate optmized CUDA code for a deep convolutional neural
network and classify an image. The generated code performs inference computation using 8-bit
integer data type for the convolution layer. The example uses the pretrained squeezenet (Deep
Learning Toolbox) convolutional neural network.

SqueezeNet has been trained on over a million images and can classify images into 1000 object
categories (such as keyboard, coffee mug, pencil, and many animals). The network has learned rich
feature representations for a wide range of images. The network takes an image as input and outputs
a label for the object in the image together with the probabilities for each of the object categories.

This example consists of the following steps:

• Modify the SqueezeNet neural network to classify a smaller subset of images containing five
object categories using transfer learning.

• Use the calibrate (Deep Learning Toolbox) function to exercise the network with sample inputs
and collect range information to produce a calibration result file.

• Generate optimized code for the network by using the codegen command and the calibration
result file.
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Third-Party Prerequisites

Required

• CUDA enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA CUDA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Transfer Learning Using SqueezeNet

To perform classification on a new set of images, you fine-tune a pretrained SqueezeNet convolutional
neural network by transfer learning. In transfer learning, you can take a pretrained network and use
it as a starting point to learn a new task. Fine-tuning a network with transfer learning is usually much
faster and easier than training a network with randomly initialized weights from scratch. You can
quickly transfer learned features to a new task using a smaller number of training images.

Load Training Data

Unzip and load the new images as an image datastore. The imageDatastore function automatically
labels the images based on folder names and stores the data as an ImageDatastore object. An
image datastore enables you to store large image data, including data that does not fit in memory,
and efficiently read batches of images during training of a convolutional neural network. Divide the
data into training and validation data sets. Use 70% of the images for training and 30% for validation.
splitEachLabel splits the imds datastore into two new datastores.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');

numTrainImages = numel(imdsTrain.Labels);
idx = randperm(numTrainImages,4);
img = imtile(imds, 'Frames', idx);

figure
imshow(img)
title('Random Images from Training Dataset');
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Load Pretrained Network

Load the pretrained SqueezeNet network. If you do not have the required support packages installed,
the software provides a download link.

net = squeezenet;

The object net contains the DAGNetwork object. The first layer, the image input layer, requires input
images of size 227-by-227-by-3, where 3 is the number of color channels. You can use the
analyzeNetwork (Deep Learning Toolbox) function to display an interactive visualization of the
network architecture, to detect errors and issues in the network, and to display detailed information
about the network layers. The layer information includes the sizes of layer activations and learnable
parameters, the total number of learnable parameters, and the sizes of state parameters of recurrent
layers.

inputSize = net.Layers(1).InputSize;
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Replace Final Layers

The convolutional layers of the network extract image features that the last learnable layer and the
final classification layer use to classify the input image. These two layers, 'conv10' and
'ClassificationLayer_predictions' in SqueezeNet, contain information on how to combine
the features that the network extracts into class probabilities, a loss value, and predicted labels.

To retrain a pretrained network to classify new images, replace these two layers with new layers
adapted to the new data set. You can do this manually or use the helper function
findLayersToReplace to find these layers automatically.

lgraph = layerGraph(net); 
[learnableLayer,classLayer] = findLayersToReplace(lgraph);
numClasses = numel(categories(imdsTrain.Labels));

newConvLayer =  convolution2dLayer([1, 1],numClasses,'WeightLearnRateFactor',...
10,'BiasLearnRateFactor',10,"Name",'new_conv');
lgraph = replaceLayer(lgraph,'conv10',newConvLayer);

newClassificatonLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,'ClassificationLayer_predictions',newClassificatonLayer);

Train Network

The network requires input images of size 227-by-227-by-3, but the images in the image datastores
have different sizes. Use an augmented image datastore to automatically resize the training images.
Specify additional augmentation operations to perform on the training images: randomly flip the
training images along the vertical axis, and randomly translate them up to 30 pixels horizontally and
vertically. Data augmentation helps prevent the network from over-fitting and memorizing the exact
details of the training images.

pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter( ...
    'RandXReflection',true, ...
    'RandXTranslation',pixelRange, ...
    'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
    'DataAugmentation',imageAugmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Specify the training options. For transfer learning, keep the features from the early layers of the
pretrained network (the transferred layer weights). To slow down learning in the transferred layers,
set the initial learning rate to a small value. In the previous step, you increased the learning rate
factors for the convolutional layer to speed up learning in the new final layers. This combination of
learning rate settings results in fast learning only in the new layers and slower learning in the other
layers. When performing transfer learning, you do not need to train for as many epochs. An epoch is a
full training cycle on the entire training data set. Specify the mini-batch size to be 11 so that in each
epoch you consider all of the data. The software validates the network every ValidationFrequency
iterations during training.

options = trainingOptions('sgdm', ...
    'MiniBatchSize',11, ...
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    'MaxEpochs',7, ...
    'InitialLearnRate',2e-4, ...
    'Shuffle','every-epoch', ...
    'ValidationData',augimdsValidation, ...
    'ValidationFrequency',3, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the network that consists of the transferred and new layers.

netTransfer = trainNetwork(augimdsTrain,lgraph,options);

classNames = netTransfer.Layers(end).Classes;
save('mySqueezenet.mat','netTransfer');

Generate Calibration Result File for the Network

Create a dlquantizer object and specify the network.

quantObj = dlquantizer(netTransfer);

Define a metric function to use to compare the behavior of the network before and after quantization.

type('hComputeModelAccuracy.m');

function accuracy = hComputeModelAccuracy(predictionScores, net, dataStore)
%% Computes model-level accuracy statistics
    
    % Load ground truth
    tmp = readall(dataStore);
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    groundTruth = tmp.response;
    
    % Compare with predicted label with actual ground truth 
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx,:)); 
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end
    
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end

Specify the metric function in a dlquantizationOptions object.

quantOpts = dlquantizationOptions('MetricFcn', ...
    {@(x)hComputeModelAccuracy(x,netTransfer,augimdsValidation)});

Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The function returns a table. Each row of the
table contains range information for a learnable parameter of the optimized network.

calResults = calibrate(quantObj,augimdsTrain);
save('squeezenetCalResults.mat','calResults');
save('squeezenetQuantObj.mat','quantObj');

You can use the validate function to quantize the learnable parameters in the convolution layers of
the network and exercise the network. The function uses the metric function defined in the
dlquantizationOptions object to compare the results of the network before and after
quantization.

valResults = validate(quantObj,augimdsValidation,quantOpts);

Create an Entry-Point Function

Write an entry-point function in MATLAB that:

• Uses the coder.loadDeepLearningNetwork function to load a deep learning model and to
construct and set up a CNN class. For more information, see “Load Pretrained Networks for Code
Generation” on page 4-66.

• Calls the predict function to predict the responses.

type('predict_int8.m');

function out = predict_int8(netFile, in)

    persistent mynet;
    if isempty(mynet)
        mynet = coder.loadDeepLearningNetwork(netFile);
    end
    out = predict(mynet,in);
end
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A persistent object mynet loads the DAGNetwork object. At the first call to the entry-point function,
the persistent object is constructed and set up. On subsequent calls to the function, the same object
is reused to call predict on inputs, avoiding reconstructing and reloading the network object.

Note

Ensure that all the preprocessing operations performed in the calibration and validation steps are
included in the design file.

Code Generation by Using codegen

To configure build settings such as output file name, location, and type, you create coder
configuration objects. To create the objects, use the coder.gpuConfig function. For example, when
generating CUDA MEX using the codegen command, use cfg = coder.gpuConfig('mex');

To specify code generation parameters for cuDNN, set the DeepLearningConfig property to a
coder.CuDNNConfig object that you create by using coder.DeepLearningConfig.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.GpuConfig.ComputeCapability = '6.1';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
cfg.DeepLearningConfig.AutoTuning = true;
cfg.DeepLearningConfig.CalibrationResultFile = 'squeezenetQuantObj.mat';
cfg.DeepLearningConfig.DataType = 'int8';

Specify the location of the MAT-file containing the calibration data.

Specify the precision of the inference computations in supported layers by using the DataType
property. For 8-bit integer, use 'int8'. Use the ComputeCapability property of the code
configuration object to set the appropriate compute capability value.

Run the codegen command. The codegen command generates CUDA code from the
predict_int8.m MATLAB entry-point function.

inputs = {coder.Constant('mySqueezenet.mat'),ones(inputSize,'uint8')};
codegen -config cfg -args inputs predict_int8

Code generation successful.

When code generation is successful, you can view the resulting code generation report by clicking
View Report in the MATLAB Command Window. The report is displayed in the Report Viewer
window. If the code generator detects errors or warnings during code generation, the report
describes the issues and provides links to the problematic MATLAB code.

Run the Generated MEX

The image that you want to classify must have the same size as the input size of the network. Read
the image that you want to classify and resize it to the input size of the network. This resizing slightly
changes the aspect ratio of the image.

testImage = imread("MerchDataTest.jpg");
testImage = imresize(testImage,inputSize(1:2));

Call SqueezeNet predict on the input image.
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predictScores(:,1) =  predict(netTransfer,testImage)';
predictScores(:,2) = predict_int8_mex('mySqueezenet.mat',testImage);

Display the predicted labels and their associated probabilities as a histogram.

h = figure;
h.Position(3) = 2*h.Position(3);
ax1 = subplot(1,2,1);
ax2 = subplot(1,2,2);

image(ax1,testImage);
barh(ax2,predictScores)
xlabel(ax2,'Probability')
yticklabels(ax2,classNames)
ax2.XLim = [0 1.1];
ax2.YAxisLocation = 'left';
legend('Matlab Single','cuDNN 8-bit integer');
sgtitle('Predictions using Squeezenet')

Helper Functions

function [learnableLayer,classLayer] = findLayersToReplace(lgraph)
% findLayersToReplace(lgraph) finds the single classification layer and the
% preceding learnable (fully connected or convolutional) layer of the layer
% graph lgraph.

if ~isa(lgraph,'nnet.cnn.LayerGraph')
    error('Argument must be a LayerGraph object.')
end

% Get source, destination, and layer names.
src = string(lgraph.Connections.Source);
dst = string(lgraph.Connections.Destination);
layerNames = string({lgraph.Layers.Name}');

% Find the classification layer. The layer graph must have a single
% classification layer.
isClassificationLayer = arrayfun(@(l) ...
    (isa(l,'nnet.cnn.layer.ClassificationOutputLayer') ...
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|isa(l,'nnet.layer.ClassificationLayer')), ...
    lgraph.Layers);

if sum(isClassificationLayer) ~= 1
    error('Layer graph must have a single classification layer.')
end
classLayer = lgraph.Layers(isClassificationLayer);

% Traverse the layer graph in reverse starting from the classification
% layer. If the network branches, throw an error.
currentLayerIdx = find(isClassificationLayer);
while true
    
    if numel(currentLayerIdx) ~= 1
        msg = ['Layer graph must have a single learnable layer ' ...
            'preceding the classification layer.'];
        error(msg)
    end
    
    currentLayerType = class(lgraph.Layers(currentLayerIdx));
    isLearnableLayer = ismember(currentLayerType, ...
        ['nnet.cnn.layer.FullyConnectedLayer','nnet.cnn.layer.Convolution2DLayer']);
    
    if isLearnableLayer
        learnableLayer =  lgraph.Layers(currentLayerIdx);
        return
    end
    
    currentDstIdx = find(layerNames(currentLayerIdx) == dst);
    currentLayerIdx = find(src(currentDstIdx) == layerNames);
    
end

end

Limitations
• When performing inference in INT8 precision using cuDNN version 8.1.0, issues in the NVIDIA

library may cause significant degradation in performance.
• The following layers are not supported for 8-bit integer quantization when targeting the NVIDIA

CUDA deep neural network library (cuDNN) library.

• leakyReluLayer
• clippedReluLayer
• globalAveragePooling2dLayer

See Also
Apps
Deep Network Quantizer

Functions
dlquantizer | dlquantizationOptions | calibrate | validate |
coder.loadDeepLearningNetwork | codegen
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Objects
coder.CuDNNConfig | coder.TensorRTConfig

More About
• “Quantization of Deep Neural Networks” on page 4-99
• “Quantize Residual Network Trained for Image Classification and Generate CUDA Code” on

page 4-229
• “Quantize Layers in Object Detectors and Generate CUDA Code” on page 4-237
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-69
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-78

4 Deep Learning

4-116



Code Generation for Deep Learning Networks

This example shows how to perform code generation for an image classification application that uses
deep learning. It uses the codegen command to generate a MEX function that runs prediction by
using image classification networks such as MobileNet-v2, ResNet, and GoogLeNet.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA® enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

Use the coder.checkGpuInstall function to verify that the compilers and libraries necessary for
running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

mobilenetv2_predict Entry-Point Function

MobileNet-v2 is a convolutional neural network that is trained on more than a million images from
the ImageNet database. The network is 155 layers deep and can classify images into 1000 object
categories, such as keyboard, mouse, pencil, and many animals. The network has an image input size
of 224-by-224. Use the analyzeNetwork (Deep Learning Toolbox) function to display an interactive
visualization of the deep learning network architecture.

net = mobilenetv2();
analyzeNetwork(net);

The mobilenetv2_predict.m entry-point function takes an image input and runs prediction on the
image using the pretrained MobileNet-v2 convolutional neural network. The function uses a
persistent object mynet to load the series network object and reuses the persistent object for
prediction on subsequent calls.

type('mobilenetv2_predict.m')

% Copyright 2017-2019 The MathWorks, Inc.
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function out = mobilenetv2_predict(in) 
%#codegen

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('mobilenetv2','mobilenetv2');
end

% pass in input   
out = mynet.predict(in);

Run MEX Code Generation

To generate CUDA code for the mobilenetv2_predict entry-point function, create a GPU code
configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig function to create a CuDNN deep learning configuration object and
assign it to the DeepLearningConfig property of the GPU code configuration object. Run the
codegen command and specify an input size of [224,224,3]. This value corresponds to the input layer
size of the MobileNet-v2 network.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
codegen -config cfg mobilenetv2_predict -args {ones(224,224,3)} -report

Code generation successful: View report

Generated Code Description

The series network is generated as a C++ class containing an array of 155 layer classes and
functions to set up, call predict, and clean up the network.

class b_mobilenetv2_0
{
   .... 
   public:
     b_mobilenetv2_0();
     void setup();
     void predict();
     void cleanup();
     ~b_mobilenetv2_0();
};

The setup() method of the class sets up handles and allocates memory for each layer of the network
object. The predict() method performs prediction for each of the 155 layers in the network.

The entry-point function mobilenetv2_predict() in the generated code file
mobilenetv2_predict.cu constructs a static object of b_mobilenetv2 class type and invokes setup
and predict on this network object.

static b_mobilenetv2_0 mynet;
static boolean_T mynet_not_empty;

/* Function Definitions */
void mobilenetv2_predict(const real_T in[150528], real32_T out[1000])
{
  if (!mynet_not_empty) {
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    DeepLearningNetwork_setup(&mynet);
    mynet_not_empty = true;
  }

   /*  pass in input    */
   DeepLearningNetwork_predict(&mynet, in, out);
 }

Binary files are exported for layers with parameters such as fully connected and convolution layers in
the network. For instance, files cnn_mobilenetv2_conv*_w and cnn_mobilenetv2_conv*_b correspond
to weights and bias parameters for the convolution layers in the network. To see a list of the
generated files, use:

dir(fullfile(pwd, 'codegen', 'mex', 'mobilenetv2_predict'))

Run Generated MEX

Load an input image.

im = imread('peppers.png');
imshow(im);

Call mobilenetv2_predict_mex on the input image.

im = imresize(im, [224,224]);
predict_scores = mobilenetv2_predict_mex(double(im));

 Code Generation for Deep Learning Networks

4-119



Get the top five prediction scores and their labels.

[scores,indx] = sort(predict_scores, 'descend');
classNames = net.Layers(end).ClassNames;
classNamesTop = classNames(indx(1:5));

h = figure;
h.Position(3) = 2*h.Position(3);
ax1 = subplot(1,2,1);
ax2 = subplot(1,2,2);

image(ax1,im);
barh(ax2,scores(5:-1:1))
xlabel(ax2,'Probability')
yticklabels(ax2,classNamesTop(5:-1:1))
ax2.YAxisLocation = 'right';
sgtitle('Top Five Predictions That Use MobileNet-v2')

Clear the static network object that was loaded in memory.

clear mex;

Classification of Images by Using ResNet-50 network

You can also use the DAG network ResNet-50 for image classification. A pretrained ResNet-50 model
for MATLAB is available in the ResNet-50 support package of Deep Learning Toolbox. To download
and install the support package, use the Add-On Explorer. To learn more about finding and installing
add-ons, see “Get and Manage Add-Ons”.

net = resnet50;
disp(net)

  DAGNetwork with properties:

         Layers: [177×1 nnet.cnn.layer.Layer]
    Connections: [192×2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_fc1000'}
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Run MEX Code Generation

To generate CUDA code for the resnet_predict.m entry-point function,create a GPU code
configuration object for a MEX target and set the target language to C++. This entry-point function
calls the resnet50 function to load the network and perform prediction on the input image.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
codegen -config cfg resnet_predict -args {ones(224,224,3)} -report

Code generation successful: View report

Call resnet_predict_mex on the input image.

predict_scores = resnet_predict_mex(double(im));

Get the top five prediction scores and their labels.

[scores,indx] = sort(predict_scores, 'descend');
classNames = net.Layers(end).ClassNames;
classNamesTop = classNames(indx(1:5));

h = figure;
h.Position(3) = 2*h.Position(3);
ax1 = subplot(1,2,1);
ax2 = subplot(1,2,2);

image(ax1,im);
barh(ax2,scores(5:-1:1))
xlabel(ax2,'Probability')
yticklabels(ax2,classNamesTop(5:-1:1))
ax2.YAxisLocation = 'right';
sgtitle('Top Five Predictions That Use ResNet-50')

Clear the static network object that was loaded in memory.

clear mex;
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Classification of Images by Using GoogLeNet (Inception) network

A pretrained GoogLeNet model for MATLAB is available in the GoogLeNet support package of Deep
Learning Toolbox. To download and install the support package, use the Add-On Explorer. To learn
more about finding and installing add-ons, see “Get and Manage Add-Ons”.

net = googlenet;
disp(net)

  DAGNetwork with properties:

         Layers: [144×1 nnet.cnn.layer.Layer]
    Connections: [170×2 table]
     InputNames: {'data'}
    OutputNames: {'output'}

Run MEX Code Generation

Generate CUDA code for the googlenet_predict.m entry-point function. This entry-point function
calls the googlenet function to load the network and perform prediction on the input image. To
generate code for this entry-point function, create a GPU configuration object for MEX target.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
codegen -config cfg googlenet_predict -args {ones(224,224,3)} -report

Code generation successful: View report

Call googlenet_predict_mex on the input image.

im = imresize(im, [224,224]);
predict_scores = googlenet_predict_mex(double(im));

Get the top five prediction scores and their labels.

[scores,indx] = sort(predict_scores, 'descend');
classNames = net.Layers(end).ClassNames;
classNamesTop = classNames(indx(1:5));

h = figure;
h.Position(3) = 2*h.Position(3);
ax1 = subplot(1,2,1);
ax2 = subplot(1,2,2);

image(ax1,im);
barh(ax2,scores(5:-1:1))
xlabel(ax2,'Probability')
yticklabels(ax2,classNamesTop(5:-1:1))
ax2.YAxisLocation = 'right';
sgtitle('Top Five Predictions That Use GoogLeNet')

4 Deep Learning

4-122



Clear the static network object that was loaded in memory.

clear mex;

See Also
Functions
coder.checkGpuInstall | codegen | coder.DeepLearningConfig |
coder.loadDeepLearningNetwork | mobilenetv2 | resnet50 | googlenet

Objects
coder.gpuConfig | coder.CodeConfig | coder.EmbeddedCodeConfig | coder.gpuEnvConfig
| coder.CuDNNConfig | coder.TensorRTConfig

See Also

More About
• “Deep Learning in MATLAB” (Deep Learning Toolbox)
• “Generated CNN Class Hierarchy” on page 4-65
• “Supported Networks, Layers, and Classes” on page 4-6
• “Load Pretrained Networks for Code Generation” on page 4-66
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-69
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-78
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Lane Detection Optimized with GPU Coder

This example shows how to develop a deep learning lane detection application that runs on NVIDIA®
GPUs.

The pretrained lane detection network can detect and output lane marker boundaries from an image
and is based on the AlexNet network. The last few layers of the AlexNet network are replaced by a
smaller fully connected layer and regression output layer. The example generates a CUDA executable
that runs on a CUDA-enabled GPU on the host machine.

Prerequisites

• CUDA enabled NVIDIA GPU.
• NVIDIA CUDA toolkit and driver.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For information on the supported versions

of the compilers and libraries, see “Third-Party Hardware”. For setting up the environment
variables, see “Setting Up the Prerequisite Products”.

Verify GPU Environment

Use the coder.checkGpuInstall function to verify that the compilers and libraries necessary for
running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Get Pretrained Lane Detection Network

This example uses the trainedLaneNet MAT-file containing the pretrained lane detection network.
This file is approximately 143 MB size. Download the file from the MathWorks website.

laneNetFile = matlab.internal.examples.downloadSupportFile('gpucoder/cnn_models/lane_detection', ...
    'trainedLaneNet.mat');

This network takes an image as an input and outputs two lane boundaries that correspond to the left
and right lanes of the ego vehicle. Each lane boundary is represented by the parabolic equation:
y = ax2 + bx + c, where y is the lateral offset and x is the longitudinal distance from the vehicle. The
network outputs the three parameters a, b, and c per lane. The network architecture is similar to
AlexNet except that the last few layers are replaced by a smaller fully connected layer and
regression output layer.

load(laneNetFile);
disp(laneNet)

  SeriesNetwork with properties:

         Layers: [23×1 nnet.cnn.layer.Layer]
     InputNames: {'data'}
    OutputNames: {'output'}
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To view the network architecture, use the analyzeNetwork function.

analyzeNetwork(laneNet)

Download Test Video

To test the model, the example uses the a video file from the Caltech lanes dataset. The file is
approximately 8 MB in size. Download the file from the MathWorks website.

videoFile = matlab.internal.examples.downloadSupportFile('gpucoder/media','caltech_cordova1.avi');

Main Entry-Point Function

The detectLanesInVideo.m file is the main entry-point function for code generation. The
detectLanesInVideo function uses the vision.VideoFileReader (Computer Vision Toolbox)
system object to read frames from the input video, calls the predict method of the LaneNet network
object, and draws the detected lanes on the input video. A vision.DeployableVideoPlayer
(Computer Vision Toolbox) system object is used to display the lane detected video output.

type detectLanesInVideo.m

function detectLanesInVideo(videoFile,net,laneCoeffMeans,laneCoeffsStds)
% detectLanesInVideo Entry-point function for the Lane Detection Optimized
% with GPU Coder example
%  
% detectLanesInVideo(videoFile,net,laneCoeffMeans,laneCoeffsStds) uses the
% VideoFileReader system object to read frames from the input video, calls
% the predict method of the LaneNet network object, and draws the detected
% lanes on the input video. A DeployableVideoPlayer system object is used
% to display the lane detected video output.

%   Copyright 2022 The MathWorks, Inc.

%#codegen

%% Create Video Reader and Video Player Object 
videoFReader   = vision.VideoFileReader(videoFile);
depVideoPlayer = vision.DeployableVideoPlayer(Name='Lane Detection on GPU');

%% Video Frame Processing Loop
while ~isDone(videoFReader)
    videoFrame = videoFReader();
    scaledFrame = 255.*(imresize(videoFrame,[227 227]));

    [laneFound,ltPts,rtPts] = laneNetPredict(net,scaledFrame, ...
        laneCoeffMeans,laneCoeffsStds);
    if(laneFound)
        pts = [reshape(ltPts',1,[]);reshape(rtPts',1,[])];
        videoFrame = insertShape(videoFrame, 'Line', pts, 'LineWidth', 4);
    end
    depVideoPlayer(videoFrame);
end
end

LaneNet Predict Function

The laneNetPredict function computes the right and left lane positions in a single video frame.
The laneNet network computes parameters a, b, and c that describe the parabolic equation for the

 Lane Detection Optimized with GPU Coder

4-125



left and right lane boundaries. From these parameters, compute the x and y coordinates
corresponding to the lane positions. The coordinates must be mapped to image coordinates.

type laneNetPredict.m

function [laneFound,ltPts,rtPts] = laneNetPredict(net,frame,means,stds) 
% laneNetPredict Predict lane markers on the input image frame using the
% lane detection network
%

%   Copyright 2017-2022 The MathWorks, Inc.

%#codegen

% A persistent object lanenet is used to load the network object. At the
% first call to this function, the persistent object is constructed and
% setup. When the function is called subsequent times, the same object is
% reused to call predict on inputs, thus avoiding reconstructing and
% reloading the network object.
persistent lanenet;
if isempty(lanenet)
    lanenet = coder.loadDeepLearningNetwork(net, 'lanenet');
end

lanecoeffsNetworkOutput = predict(lanenet,frame);

% Recover original coeffs by reversing the normalization steps.
params = lanecoeffsNetworkOutput .* stds + means;

% 'c' should be more than 0.5 for it to be a lane.
isRightLaneFound = abs(params(6)) > 0.5;
isLeftLaneFound =  abs(params(3)) > 0.5;

% From the networks output, compute left and right lane points in the image
% coordinates.
vehicleXPoints = 3:30;
ltPts = coder.nullcopy(zeros(28,2,'single'));
rtPts = coder.nullcopy(zeros(28,2,'single'));

if isRightLaneFound && isLeftLaneFound
    rtBoundary = params(4:6);
    rt_y = computeBoundaryModel(rtBoundary, vehicleXPoints);
    
    ltBoundary = params(1:3);
    lt_y = computeBoundaryModel(ltBoundary, vehicleXPoints);

    % Visualize lane boundaries of the ego vehicle.
    tform = get_tformToImage;

    % Map vehicle to image coordinates.
    ltPts =  tform.transformPointsInverse([vehicleXPoints', lt_y']);
    rtPts =  tform.transformPointsInverse([vehicleXPoints', rt_y']);
    laneFound = true;
else
    laneFound = false;
end
end
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%% Helper Functions

% Compute boundary model.
function yWorld = computeBoundaryModel(model, xWorld)
yWorld = polyval(model, xWorld);
end

% Compute extrinsics.
function tform = get_tformToImage

%The camera coordinates are described by the caltech mono
% camera model.
yaw = 0;
pitch = 14; % Pitch of the camera in degrees
roll = 0;

translation = translationVector(yaw, pitch, roll);
rotation    = rotationMatrix(yaw, pitch, roll);

% Construct a camera matrix.
focalLength    = [309.4362, 344.2161];
principalPoint = [318.9034, 257.5352];
Skew = 0;

camMatrix = [rotation; translation] * intrinsicMatrix(focalLength, ...
    Skew, principalPoint);

% Turn camMatrix into 2-D homography.
tform2D = [camMatrix(1,:); camMatrix(2,:); camMatrix(4,:)]; % drop Z

tform = projective2d(tform2D);
tform = tform.invert();
end

% Translate to image co-ordinates.
function translation = translationVector(yaw, pitch, roll)
SensorLocation = [0 0];
Height = 2.1798;    % mounting height in meters from the ground
rotationMatrix = (...
    rotZ(yaw)*... % last rotation
    rotX(90-pitch)*...
    rotZ(roll)... % first rotation
    );

% Adjust for the SensorLocation by adding a translation.
sl = SensorLocation;

translationInWorldUnits = [sl(2), sl(1), Height];
translation = translationInWorldUnits*rotationMatrix;
end

% Rotation around X-axis.
function R = rotX(a)
a = deg2rad(a);
R = [...
    1   0        0;
    0   cos(a)  -sin(a);
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    0   sin(a)   cos(a)];

end

% Rotation around Y-axis.
function R = rotY(a)
a = deg2rad(a);
R = [...
    cos(a)  0 sin(a);
    0       1 0;
    -sin(a) 0 cos(a)];

end

% Rotation around Z-axis.
function R = rotZ(a)
a = deg2rad(a);
R = [...
    cos(a) -sin(a) 0;
    sin(a)  cos(a) 0;
    0       0      1];
end

% Given the Yaw, Pitch, and Roll, determine the appropriate Euler angles
% and the sequence in which they are applied to align the camera's
% coordinate system with the vehicle coordinate system. The resulting
% matrix is a Rotation matrix that together with the Translation vector
% defines the extrinsic parameters of the camera.
function rotation = rotationMatrix(yaw, pitch, roll)
rotation = (...
    rotY(180)*...            % last rotation: point Z up
    rotZ(-90)*...            % X-Y swap
    rotZ(yaw)*...            % point the camera forward
    rotX(90-pitch)*...       % "un-pitch"
    rotZ(roll)...            % 1st rotation: "un-roll"
    );
end

% Intrinsic matrix computation.
function intrinsicMat = intrinsicMatrix(FocalLength, Skew, PrincipalPoint)
intrinsicMat = ...
    [FocalLength(1)  , 0                     , 0; ...
    Skew             , FocalLength(2)   , 0; ...
    PrincipalPoint(1), PrincipalPoint(2), 1];
end

Generate CUDA Executable

To generate a standalone CUDA executable for the detectLanesInVideo entry-point function,
create a GPU code configuration object for 'exe' target and set the target language to C++. Use the
coder.DeepLearningConfig function to create a CuDNN deep learning configuration object and
assign it to the DeepLearningConfig property of the GPU code configuration object.

cfg = coder.gpuConfig('exe');
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
cfg.GenerateReport = true;
cfg.GenerateExampleMain = "GenerateCodeAndCompile";
cfg.TargetLang = 'C++';
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inputs = {coder.Constant(videoFile),coder.Constant(laneNetFile), ...
    coder.Constant(laneCoeffMeans),coder.Constant(laneCoeffsStds)};

Run the codegen command.

codegen -args inputs -config cfg detectLanesInVideo

Code generation successful: View report

Generated Code Description

The series network is generated as a C++ class containing an array of 18 layer classes (after layer
fusion optimization). The setup() method of the class sets up handles and allocates memory for each
layer object. The predict() method invokes prediction for each of the 18 layers in the network.

class lanenet0_0 {
public:
  lanenet0_0();
  void setSize();
  void resetState();
  void setup();
  void predict();
  void cleanup();
  float *getLayerOutput(int layerIndex, int portIndex);
  int getLayerOutputSize(int layerIndex, int portIndex);
  float *getInputDataPointer(int b_index);
  float *getInputDataPointer();
  float *getOutputDataPointer(int b_index);
  float *getOutputDataPointer();
  int getBatchSize();
  ~lanenet0_0();

private:
  void allocate();
  void postsetup();
  void deallocate();

public:
  boolean_T isInitialized;
  boolean_T matlabCodegenIsDeleted;

private:
  int numLayers;
  MWTensorBase *inputTensors[1];
  MWTensorBase *outputTensors[1];
  MWCNNLayer *layers[18];
  MWCudnnTarget::MWTargetNetworkImpl *targetImpl;
};

The cnn_lanenet*_conv*_w and cnn_lanenet*_conv*_b files are the binary weights and bias file for
convolution layer in the network. The cnn_lanenet*_fc*_w and cnn_lanenet*_fc*_b files are the binary
weights and bias file for fully connected layer in the network.

codegendir = fullfile('codegen', 'exe', 'detectLanesInVideo');
dir([codegendir,filesep,'*.bin'])

cnn_lanenet0_0_conv1_b.bin        cnn_lanenet0_0_conv3_b.bin        cnn_lanenet0_0_conv5_b.bin        cnn_lanenet0_0_fc6_b.bin          cnn_lanenet0_0_fcLane2_b.bin      
cnn_lanenet0_0_conv1_w.bin        cnn_lanenet0_0_conv3_w.bin        cnn_lanenet0_0_conv5_w.bin        cnn_lanenet0_0_fc6_w.bin          cnn_lanenet0_0_fcLane2_w.bin      
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cnn_lanenet0_0_conv2_b.bin        cnn_lanenet0_0_conv4_b.bin        cnn_lanenet0_0_data_offset.bin    cnn_lanenet0_0_fcLane1_b.bin      networkParamsInfo_lanenet0_0.bin  
cnn_lanenet0_0_conv2_w.bin        cnn_lanenet0_0_conv4_w.bin        cnn_lanenet0_0_data_scale.bin     cnn_lanenet0_0_fcLane1_w.bin      

Run the Executable

To run the executable, uncomment the following lines of code.

if ispc
    [status,cmdout] = system("detectLanesInVideo.exe");
else
    [status,cmdout] = system("./detectLanesInVideo");
end

See Also
Functions
codegen | coder.DeepLearningConfig | coder.loadDeepLearningNetwork |
coder.checkGpuInstall

Objects
coder.gpuConfig | coder.gpuEnvConfig | coder.CuDNNConfig | coder.TensorRTConfig
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See Also

More About
• “Generated CNN Class Hierarchy” on page 4-65
• “Supported Networks, Layers, and Classes” on page 4-6
• “Deep Learning in MATLAB” (Deep Learning Toolbox)
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Traffic Sign Detection and Recognition

This example shows how to generate CUDA® MEX code for a traffic sign detection and recognition
application that uses deep learning. Traffic sign detection and recognition is an important application
for driver assistance systems, aiding and providing information to the driver about road signs.

In this traffic sign detection and recognition example you perform three steps - detection, Non-
Maximal Suppression (NMS), and recognition. First, the example detects the traffic signs on an input
image by using an object detection network that is a variant of the You Only Look Once (YOLO)
network. Then, overlapping detections are suppressed by using the NMS algorithm. Finally, the
recognition network classifies the detected traffic signs.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA® enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

Use the coder.checkGpuInstall function to verify that the compilers and libraries necessary for
running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
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envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Detection and Recognition Networks

The detection network is trained in the Darknet framework and imported into MATLAB® for
inference. Because the size of the traffic sign is relatively small with respect to that of the image and
the number of training samples per class are fewer in the training data, all the traffic signs are
considered as a single class for training the detection network.

The detection network divides the input image into a 7-by-7 grid. Each grid cell detects a traffic sign
if the center of the traffic sign falls within the grid cell. Each cell predicts two bounding boxes and
confidence scores for these bounding boxes. Confidence scores indicate whether the box contains an
object or not. Each cell predicts on probability for finding the traffic sign in the grid cell. The final
score is product of the preceding scores. You apply a threshold of 0.2 on this final score to select the
detections.

The recognition network is trained on the same images by using MATLAB.

The trainRecognitionnet.m helper script shows the recognition network training.

Get the Pretrained Detector and Recognition Networks

This example uses the yolo_tsr and RecognitionNet MAT-files containing the pretrained
networks. The files are approximately 6MB and 992MB in size, respectively. Download the files from
the MathWorks website.

detectorNet = matlab.internal.examples.downloadSupportFile('gpucoder/cnn_models/traffic_sign_detection/v001','yolo_tsr.mat');
recognitionNet = matlab.internal.examples.downloadSupportFile('gpucoder/cnn_models/traffic_sign_detection/v001','RecognitionNet.mat');

The detection network contains 58 layers including convolution, leaky ReLU, and fully connected
layers.

load(detectorNet);
yolo

yolo = 
  SeriesNetwork with properties:

         Layers: [58×1 nnet.cnn.layer.Layer]
     InputNames: {'input'}
    OutputNames: {'classoutput'}

To view the network architecture, use the analyzeNetwork (Deep Learning Toolbox) function.

analyzeNetwork(yolo)

The recognition network contains 14 layers including convolution, fully connected, and the
classification output layers.

load(recognitionNet);
convnet

convnet = 
  SeriesNetwork with properties:

 Traffic Sign Detection and Recognition

4-133



         Layers: [14×1 nnet.cnn.layer.Layer]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

The tsdr_predict Entry-Point Function

The tsdr_predict.m entry-point function takes an image input and detects the traffic signs in the
image by using the detection network. The function suppresses the overlapping detections (NMS) by
using selectStrongestBbox and recognizes the traffic sign by using the recognition network. The
function loads the network objects from yolo_tsr.mat into a persistent variable detectionnet and
the RecognitionNet.mat into a persistent variable recognitionnet. The function reuses the
persistent objects on subsequent calls.

type('tsdr_predict.m')

function [selectedBbox,idx] = tsdr_predict(img,detectorMATFile,recogMATFile)
%#codegen

coder.gpu.kernelfun;

% resize the image
img_rz = imresize(img,[448,448]);

% Converting into BGR format
img_rz = img_rz(:,:,3:-1:1);
img_rz = im2single(img_rz);

%% TSD
persistent detectionnet;
if isempty(detectionnet)   
    detectionnet = coder.loadDeepLearningNetwork(detectorMATFile,'Detection');
end

predictions = detectionnet.activations(img_rz,56,'OutputAs','channels');

%% Convert predictions to bounding box attributes
classes = 1;
num = 2;
side = 7;
thresh = 0.2;
[h,w,~] = size(img);

boxes = single(zeros(0,4));    
probs = single(zeros(0,1));    
for i = 0:(side*side)-1
    for n = 0:num-1
        p_index = side*side*classes + i*num + n + 1;
        scale = predictions(p_index);       
        prob = zeros(1,classes+1);
        for j = 0:classes
            class_index = i*classes + 1;
            tempProb = scale*predictions(class_index+j);
            if tempProb > thresh
                
                row = floor(i / side);
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                col = mod(i,side);
                
                box_index = side*side*(classes + num) + (i*num + n)*4 + 1;
                bxX = (predictions(box_index + 0) + col) / side;
                bxY = (predictions(box_index + 1) + row) / side;
                
                bxW = (predictions(box_index + 2)^2);
                bxH = (predictions(box_index + 3)^2);
                
                prob(j+1) = tempProb;
                probs = [probs;tempProb];
                                
                boxX = (bxX-bxW/2)*w+1;
                boxY = (bxY-bxH/2)*h+1;
                boxW = bxW*w;
                boxH = bxH*h;
                boxes = [boxes; boxX,boxY,boxW,boxH];
            end
        end
    end
end

%% Run Non-Maximal Suppression on the detected bounding boxess
coder.varsize('selectedBbox',[98, 4],[1 0]);
[selectedBbox,~] = selectStrongestBbox(round(boxes),probs);

%% Recognition

persistent recognitionnet;
if isempty(recognitionnet) 
    recognitionnet = coder.loadDeepLearningNetwork(recogMATFile,'Recognition');
end

idx = zeros(size(selectedBbox,1),1);
inpImg = coder.nullcopy(zeros(48,48,3,size(selectedBbox,1)));
for i = 1:size(selectedBbox,1)
    
    ymin = selectedBbox(i,2);
    ymax = ymin+selectedBbox(i,4);
    xmin = selectedBbox(i,1);
    xmax = xmin+selectedBbox(i,3);

    
    % Resize Image
    inpImg(:,:,:,i) = imresize(img(ymin:ymax,xmin:xmax,:),[48,48]);
end

for i = 1:size(selectedBbox,1)
    output = recognitionnet.predict(inpImg(:,:,:,i));
    [~,idx(i)]=max(output);
end

% Copyright 2017-2022 The MathWorks, Inc.

Generate CUDA MEX for the tsdr_predict Function

Create a GPU configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig function to create a CuDNN deep learning configuration object and
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assign it to the DeepLearningConfig property of the GPU code configuration object. To generate
CUDA MEX, use the codegen command and specify the input to be of size [480,704,3]. This value
corresponds to the input image size of the tsdr_predict function.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
inputArgs = {ones(480,704,3,'uint8'),coder.Constant(detectorNet),...
    coder.Constant(recognitionNet)};
codegen -config cfg tsdr_predict -args inputArgs -report

Code generation successful: View report

To generate code by using TensorRT, pass coder.DeepLearningConfig('tensorrt') as an
option to the coder configuration object instead of 'cudnn'.

Run Generated MEX

Load an input image.

im = imread('stop.jpg');
imshow(im);

Call tsdr_predict_mex on the input image.

im = imresize(im, [480,704]);
[bboxes,classes] = tsdr_predict_mex(im,detectorNet,recognitionNet);
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Map the class numbers to traffic sign names in the class dictionary.

classNames = {...
    'addedLane','slow','dip','speedLimit25','speedLimit35','speedLimit40',...
    'speedLimit45','speedLimit50','speedLimit55','speedLimit65',...
    'speedLimitUrdbl','doNotPass','intersection','keepRight','laneEnds',...
    'merge','noLeftTurn','noRightTurn','stop','pedestrianCrossing',...
    'stopAhead','rampSpeedAdvisory20','rampSpeedAdvisory45',...
    'truckSpeedLimit55','rampSpeedAdvisory50','turnLeft',...
    'rampSpeedAdvisoryUrdbl','turnRight','rightLaneMustTurn','yield',...
    'yieldAhead','school','schoolSpeedLimit25','zoneAhead45','signalAhead'};

classRec = classNames(classes);

Display the detected traffic signs.

outputImage = insertShape(im,'Rectangle',bboxes,'LineWidth',3);

for i = 1:size(bboxes,1)
    outputImage = insertText(outputImage,[bboxes(i,1)+ ...
        bboxes(i,3) bboxes(i,2)-20],classRec{i},'FontSize',20,...
        'TextColor','red');
end

imshow(outputImage);
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Traffic Sign Detection and Recognition on a Video

The included helper file tsdr_testVideo.m grabs frames from the test video, performs traffic sign
detection and recognition, and plots the results on each frame of the test video.

type tsdr_testVideo

function tsdr_testVideo

% Copyright 2017-2022 The MathWorks, Inc.

% Input video
v = VideoReader('stop.avi');

%% Generate Code for Traffic Sign Detection and Recognition
% Create a GPU Configuration object for MEX target setting target language
% to C++. Run the |codegen| command specifying an input of input video
% frame size. This corresponds to the input image size of tsdr_predict
% function.
cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
inputArgs = {ones(480,704,3,'uint8'),coder.constant(detectorNet),...
    coder.Constant(recognitionNet)};
codegen -config cfg tsdr_predict -args inputArgs -report

fps = 0;

while hasFrame(v)
    % Take a frame
    picture = readFrame(v);
    picture = imresize(picture,[480,704]);
    % Call MEX function for Traffic Sign Detection and Recognition
    tic;
    [bboxes,clases] = tsdr_predict_mex(picture,detectorNet,recognitionNet);
    newt = toc;
    
    % fps
    fps = .9*fps + .1*(1/newt);
    
    % display
   
        diplayDetections(picture,bboxes,clases,fps);
end

end

function diplayDetections(im,boundingBoxes,classIndices,fps)
% Function for inserting the detected bounding boxes and recognized classes
% and displaying the result
%
% Inputs :
%
% im            : Input test image
% boundingBoxes : Detected bounding boxes
% classIndices  : Corresponding classes
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%

% Traffic Signs (35)
classNames = {'addedLane','slow','dip','speedLimit25','speedLimit35',...
    'speedLimit40','speedLimit45','speedLimit50','speedLimit55',...
    'speedLimit65','speedLimitUrdbl','doNotPass','intersection',...
    'keepRight','laneEnds','merge','noLeftTurn','noRightTurn','stop',...
    'pedestrianCrossing','stopAhead','rampSpeedAdvisory20',...
    'rampSpeedAdvisory45','truckSpeedLimit55','rampSpeedAdvisory50',...
    'turnLeft','rampSpeedAdvisoryUrdbl','turnRight','rightLaneMustTurn',...
    'yield','yieldAhead','school','schoolSpeedLimit25','zoneAhead45',...
    'signalAhead'};

outputImage = insertShape(im,'Rectangle',boundingBoxes,'LineWidth',3);

for i = 1:size(boundingBoxes,1)
    
     ymin = boundingBoxes(i,2);
     xmin = boundingBoxes(i,1);
     xmax = xmin+boundingBoxes(i,3);
    
    % inserting class as text at YOLO detection
    classRec = classNames{classIndices(i)};
    outputImage = insertText(outputImage,[xmax ymin-20],classRec,...
        'FontSize',20,'TextColor','red');
    
end
outputImage = insertText(outputImage,...
    round(([size(outputImage,1) 40]/2)-20),...
    ['Frame Rate: ',num2str(fps)],'FontSize',20,'TextColor','red');
imshow(outputImage);
end

See Also
Functions
coder.checkGpuInstall | codegen | coder.DeepLearningConfig |
coder.loadDeepLearningNetwork

Objects
coder.gpuConfig | coder.gpuEnvConfig | coder.CuDNNConfig | coder.TensorRTConfig

More About
• “Supported Networks, Layers, and Classes” on page 4-6
• “Load Pretrained Networks for Code Generation” on page 4-66
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-69
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-78
• “Choose Function to Visualize Detected Objects” (Computer Vision Toolbox)
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Logo Recognition Network

This example shows code generation for a logo classification application that uses deep learning. It
uses a pretrained network called LogoNet and classifies an input image into 32 logo categories. This
example also describes how to train the network by using preprocessed training data set. Finally, this
example uses the codegen command to generate a MEX function and performs the prediction.

This example illustrates the following concepts:

• Preprocess the training images by extracting the logos and resizing to 227-by-227-by-3.
Subsequently, use image augmentation to increase training data size.

• Train the network by using the stochastic gradient descent with momentum (SGDM) optimizer.
• Generate a CUDA® MEX and run the MEX.

Third-Party Prerequisites

Required

This example generates CUDA MEX and requires CUDA-enabled NVIDIA® GPU and compatible
driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

Use the coder.checkGpuInstall function to verify that the compilers and libraries for running this
example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Logo Recognition Network

Logos assist users in brand identification and recognition. Many companies incorporate their logos in
advertising, documentation materials, and promotions. The logo recognition network was developed
in MATLAB® and contains 22 layers. The network contains four sets of convolutional max pooling
layers, three fully connected layers, and dropout layers that reduce computational expense. The
network takes an input image of size 227-by-227-by-3 and classifies it into 32 logo categories.
Because this network focuses on recognition, you can use it in applications where localization is not
required. The network was trained in MATLAB by using the Flickr32Logos[1] and Flickr32 Plus[2]
training data set. The two data sets contain around 200 images for each logo. The network was
trained by using the stochastic gradient descent with momentum (SGDM) optimizer, a learning rate of
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0.0001, 40 epochs, and a mini-batch size of 45. By default, the example uses a pretrained logo
recognition network. The pretrained network enables you to run the entire example without having to
wait for training to complete.

To train the network, set the doTraining variable in the following code to true. You must also
download the Logos-32plus data set from Deep Learning for Logo Recognition and provide the
location of the downloaded Logos-32plus_v1.0.1.zip file to logozipPath. The size of Logos-32plus
data set is 1.95 GB. Depending on your internet connection, the download process can take time. The
data set has 32 image subfolders containing a total of 7830 logo images from various brands. The
groundtruth MAT-file provides the bounding box information of the logo in each image.

The preprocessLogoData function preprocesses the data for network training. The images in the
Logos-32plus data set are of varying size. You must resize the images to input layer size of the
network (227-by-227-by-3). The images also contain background information that you must remove.
The preprocessLogoData.m performs these steps by using the bounding box information to extract
the logos and creates a imageDatastore object that you can use for network training. The
trainLogonet function creates logo recognition layers and trains the network by using specified
training options. The network is trained using data that contains at least 110 images for each logo.

You can also increase the number of training samples by using data augmentation. Data
augmentation helps prevent the network from overfitting and memorizing the exact details of the
training images. To increase the training data, four types of data augmentation are provided: random
flipping, Gaussian blur, shearing, and contrast normalization. To use data augmentation, set the
doAugmentation variable in the following code to true.

doTraining = false;

if ~doTraining
    getLogonet;
else
    logozipPath  = '';% provide path of the downloaded zip file
    zipData = fullfile(logozipPath,'Logos-32plus_v1.0.1.zip');
    unpackedData = fullfile(logozipPath,'Logos32plus');
    
    if ~exist(unpackedData,'dir')
        unzip(zipData,unpackedData);
    end

    doAugmentation = false;
    logoData = preprocessLogoData(unpackedData,doAugmentation);
    trainLogonet(logoData);
end

load('LogoNet.mat');
convnet

convnet = 
  SeriesNetwork with properties:

         Layers: [22×1 nnet.cnn.layer.Layer]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

To view the network architecture, use the analyzeNetwork (Deep Learning Toolbox) function.

analyzeNetwork(convnet)
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The logonet_predict Entry-Point Function

The logonet_predict.m entry-point function takes an image input and performs prediction on the
image by using the deep learning network saved in the LogoNet.mat file. The function loads the
network object from LogoNet.mat into a persistent variable logonet and reuses the persistent
variable on subsequent prediction calls.

type('logonet_predict.m')

function out = logonet_predict(in)
%#codegen

% Copyright 2017-2022 The MathWorks, Inc.

% A persistent object logonet is used to load the network object. At the
% first call to this function, the persistent object is constructed and
% setup. When the function is called subsequent times, the same object is
% reused to call predict on inputs, thus avoiding reconstructing and
% reloading the network object.
persistent logonet;

if isempty(logonet)
    
    logonet = coder.loadDeepLearningNetwork('LogoNet.mat','logonet');
end

out = logonet.predict(in);

end

Generate CUDA MEX for the logonet_predict Function

Create a GPU configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig function to create a CuDNN deep learning configuration object. Assign
it to the DeepLearningConfig property of the GPU code configuration object. To generate CUDA
MEX, use the codegen command and specify the input to be of size [227,227,3]. This value
corresponds to the input layer size of the logonet network.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
codegen -config cfg logonet_predict -args {ones(227,227,3,'uint8')} -report

Code generation successful: View report

Run Generated MEX

Load an input image. Call logonet_predict_mex on the input image.

im = imread('test.png');
imshow(im);
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im = imresize(im, [227,227]);
predict_scores = logonet_predict_mex(im);

Map the top five prediction scores to words in the Wordnet dictionary synset (logos).

synsetOut = convnet.Layers(end).Classes;

[val,indx] = sort(predict_scores, 'descend');
scores = val(1:5)*100;
top5labels = synsetOut(indx(1:5));

Display the top five classification labels.

outputImage = zeros(227,400,3, 'uint8');
for k = 1:3
    outputImage(:,174:end,k) = im(:,:,k);
end

scol = 1;
srow = 20;

for k = 1:5
    outputImage = insertText(outputImage, [scol, srow],...
        [char(top5labels(k)),' ',num2str(scores(k),'%2.2f'),'%'],...
        'TextColor', 'w','FontSize',15, 'BoxColor', 'black');
    srow = srow + 20;
end

 imshow(outputImage);
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Clear the static network object that was loaded in memory.

clear mex;
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See Also
Functions
coder.checkGpuInstall | codegen | coder.DeepLearningConfig |
coder.loadDeepLearningNetwork

Objects
coder.gpuConfig | coder.gpuEnvConfig | coder.CuDNNConfig | coder.TensorRTConfig

More About
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-69
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-78
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Deep Learning Prediction with NVIDIA TensorRT Library

This example shows how to generate code for a deep learning application by using the NVIDIA®
TensorRT™ library. This example uses the codegen command to generate a MEX file that performs
prediction with a Logo Recognition classification network by using TensorRT. The example also
demonstrates how to use codegen command to generate a MEX file that performs 8-bit integer and
16-bit floating point prediction.

Third-Party Prerequisites

Required

This example generates CUDA® MEX and requires a CUDA-enabled NVIDIA GPU and compatible
driver. You must have specific GPU compute capability for 8-bit integer and 16-bit floating point
precision modes, see “Third-Party Hardware”.

Optional

For non-MEX builds such as static, dynamic libraries or executables, you must also have:

• NVIDIA toolkit.
• NVIDIA cuDNN and the TensorRT library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

Use the coder.checkGpuInstall function to verify that the compilers and libraries necessary for
running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'tensorrt';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Download and Load Pretrained Network

This example uses a pretrained logo recognition network to classify logos in images. Download the
pretrained LogoNet network from MathWorks website and load the file. The network was developed
in MATLAB and is approximately 42 MB in size. This network can recognize 32 logos under various
lighting conditions and camera angles. For information on training the logo recognition network, see
“Logo Recognition Network” on page 4-140.

net = getLogonet;

The logonet_predict Entry-Point Function

The logonet_predict.m entry-point function takes an image input and performs prediction on the
image by using the deep learning network saved in the LogoNet.mat file. The function loads the
network object from LogoNet.mat into a persistent variable logonet and reuses the persistent
variable during subsequent prediction calls.

type('logonet_predict.m')
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function out = logonet_predict(in)
%#codegen

% Copyright 2017-2022 The MathWorks, Inc.

% A persistent object logonet is used to load the network object. At the
% first call to this function, the persistent object is constructed and
% setup. When the function is called subsequent times, the same object is
% reused to call predict on inputs, thus avoiding reconstructing and
% reloading the network object.
persistent logonet;

if isempty(logonet)
    
    logonet = coder.loadDeepLearningNetwork('LogoNet.mat','logonet');

end

out = logonet.predict(in);

end

Run MEX Code Generation

To generate CUDA code for the logonet_predict entry-point function, create a GPU code
configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig function to create a TensorRT deep learning configuration object and
assign it to the DeepLearningConfig property of the GPU code configuration object. Run the
codegen command by specifying an input size of 227-by-227-by-3. This value corresponds to the
input layer size of the Logo Recognition network. By default, generating TensorRT code runs
inference in 32-bit floats.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('tensorrt');
codegen -config cfg logonet_predict -args {coder.typeof(single(0),[227 227 3])} -report

Code generation successful: View report

Perform Prediction on Test Image

Load an input image. Call logonet_predict_mex on the input image.

im = imread('gpucoder_tensorrt_test.png');
im = imresize(im, [227,227]);
predict_scores = logonet_predict_mex(single(im));

% get top 5 probability scores and their labels
[val,indx] = sort(predict_scores, 'descend');
scores = val(1:5)*100;
classnames = net.Layers(end).ClassNames;
top5labels = classnames(indx(1:5));

Display the top five classification labels.

outputImage = zeros(227,400,3, 'uint8');
for k = 1:3
    outputImage(:,174:end,k) = im(:,:,k);
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end

scol = 1;
srow = 20;

for k = 1:5
    outputImage = insertText(outputImage, [scol, srow],...
        [char(top5labels(k)),' ',num2str(scores(k),'%2.2f'),'%'],...
        'TextColor', 'w','FontSize',15, 'BoxColor', 'black');
    srow = srow + 20;
end

 imshow(outputImage);

Free the GPU memory by removing the loaded MEX function.

clear mex;

Generate TensorRT Code for 8-Bit Integer Prediction

Generate TensorRT code that runs inference in int8 precision.

Code generation by using the NVIDIA TensorRT Library with inference computation in 8-bit integer
precision supports these additional networks:

• Object detector networks, such as YOLOv2 and SSD
• Regression and semantic segmentation networks

TensorRT requires a calibration data set to calibrate a network that is trained in floating-point to
compute inference in 8-bit integer precision. Set the data type to int8 and the path to the calibration
data set by using the DeepLearningConfig. logos_dataset is a subfolder that contains images
grouped by their classification labels. For int8 support, the GPU compute capability must be 6.1, 7.0,
or higher.
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Note that for semantic segmentation networks, the calibration data images must be of a format
supported by the imread function.

unzip('logos_dataset.zip');
cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.GpuConfig.ComputeCapability = '6.1';
cfg.DeepLearningConfig = coder.DeepLearningConfig('tensorrt');
cfg.DeepLearningConfig.DataType = 'int8';
cfg.DeepLearningConfig.DataPath = 'logos_dataset';
cfg.DeepLearningConfig.NumCalibrationBatches = 50;
codegen -config cfg logonet_predict -args {coder.typeof(int8(0),[227 227 3])} -report

Code generation successful: View report

Run INT8 Prediction on Test Image

Load an input image. Call logonet_predict_mex on the input image.

im = imread('gpucoder_tensorrt_test.png');
im = imresize(im, [227,227]);    
predict_scores = logonet_predict_mex(int8(im));

% get top 5 probability scores and their labels
[val,indx] = sort(predict_scores, 'descend');
scores = val(1:5)*100;
classnames = net.Layers(end).ClassNames;
top5labels = classnames(indx(1:5));

Display the top five classification labels.

outputImage = zeros(227,400,3, 'uint8');
for k = 1:3
    outputImage(:,174:end,k) = im(:,:,k);
end

scol = 1;
srow = 20;

for k = 1:5
    outputImage = insertText(outputImage, [scol, srow],...
        [char(top5labels(k)),' ',num2str(scores(k),'%2.2f'),'%'],...
        'TextColor', 'w','FontSize',15, 'BoxColor', 'black');
    srow = srow + 20;
end

 imshow(outputImage);
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Free the GPU memory by removing the loaded MEX function.

clear mex;

Generate TensorRT Code for 16-bit Floating Point Prediction

Generate TensorRT code that runs inference in fp16 precision. For fp16 support, the GPU compute
capability must be 5.3, 6.0, 6.2 or higher.

Note that quantization error occurs when accumulating operations in single precision and converting
them to half precision. For more information, see “Quantization of Deep Neural Networks” on page 4-
99.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.GpuConfig.ComputeCapability = '5.3';
cfg.DeepLearningConfig = coder.DeepLearningConfig('tensorrt');
cfg.DeepLearningConfig.DataType = 'fp16';
codegen -config cfg logonet_predict -args {coder.typeof(half(0),[227 227 3])} -report

Code generation successful: View report

Run FP16 Prediction on Test Image

Load an input image. Call logonet_predict_mex on the input image.

im = imread('gpucoder_tensorrt_test.png');

im = imresize(im, [227,227]);    
predict_scores = logonet_predict_mex(half(im));

% get top 5 probability scores and their labels
[val,indx] = sort(predict_scores, 'descend');
scores = val(1:5)*100;
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classnames = net.Layers(end).ClassNames;
top5labels = classnames(indx(1:5));

Display the top five classification labels.

outputImage = zeros(227,400,3, 'uint8');
for k = 1:3
    outputImage(:,174:end,k) = im(:,:,k);
end

scol = 1;
srow = 20;

for k = 1:5
    outputImage = insertText(outputImage, [scol, srow],...
        [char(top5labels(k)),' ',num2str(scores(k),'%2.2f'),'%'],...
        'TextColor', 'w','FontSize',15, 'BoxColor', 'black');
    srow = srow + 20;
end

 imshow(outputImage);

Free the GPU memory by removing the loaded MEX function.

clear mex;

See Also
Functions
coder.checkGpuInstall | codegen | coder.DeepLearningConfig |
coder.loadDeepLearningNetwork
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Objects
coder.gpuConfig | coder.CodeConfig | coder.EmbeddedCodeConfig | coder.gpuEnvConfig
| coder.TensorRTConfig

See Also

More About
• “Supported Networks, Layers, and Classes” on page 4-6
• “Load Pretrained Networks for Code Generation” on page 4-66
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-78
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Code Generation for Semantic Segmentation Network

This example shows code generation for an image segmentation application that uses deep learning.
It uses the codegen command to generate a MEX function that performs prediction on a DAG
Network object for SegNet [1], a deep learning network for image segmentation.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA® enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

Use the coder.checkGpuInstall function to verify that the compilers and libraries necessary for
running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Segmentation Network

SegNet [1] is a type of convolutional neural network (CNN) designed for semantic image
segmentation. It is a deep encoder-decoder multi-class pixel-wise segmentation network trained on
the CamVid [2] dataset and imported into MATLAB® for inference. The SegNet [1] is trained to
segment pixels belonging to 11 classes that include Sky, Building, Pole, Road, Pavement, Tree,
SignSymbol, Fence, Car, Pedestrian, and Bicyclist.

For information regarding training a semantic segmentation network in MATLAB by using the
CamVid [2] dataset, see “Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox).

The segnet_predict Entry-Point Function

The segnet_predict.m entry-point function takes an image input and performs prediction on the
image by using the deep learning network saved in the SegNet.mat file. The function loads the
network object from the SegNet.mat file into a persistent variable mynet and reuses the persistent
variable on subsequent prediction calls.

type('segnet_predict.m')
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function out = segnet_predict(in)
%#codegen
% Copyright 2018-2021 The MathWorks, Inc.

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('SegNet.mat');
end

% pass in input
out = predict(mynet,in);

Get Pretrained SegNet DAG Network Object

net = getSegNet();

The DAG network contains 91 layers including convolution, batch normalization, pooling, unpooling,
and the pixel classification output layers. Use the analyzeNetwork (Deep Learning Toolbox)
function to display an interactive visualization of the deep learning network architecture.

analyzeNetwork(net);

Run MEX Code Generation

To generate CUDA code for the segnet_predict.m entry-point function, create a GPU code
configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig function to create a CuDNN deep learning configuration object and
assign it to the DeepLearningConfig property of the GPU code configuration object. Run the
codegen command specifying an input size of [360,480,3]. This value corresponds to the input layer
size of SegNet.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
codegen -config cfg segnet_predict -args {ones(360,480,3,'uint8')} -report

Code generation successful: View report

Run Generated MEX

Load and display an input image. Call segnet_predict_mex on the input image.

im = imread('gpucoder_segnet_image.png');
imshow(im);

 Code Generation for Semantic Segmentation Network

4-153



predict_scores = segnet_predict_mex(im);

The predict_scores variable is a three-dimensional matrix that has 11 channels corresponding to the
pixel-wise prediction scores for every class. Compute the channel by using the maximum prediction
score to get pixel-wise labels.

[~,argmax] = max(predict_scores,[],3);

Overlay the segmented labels on the input image and display the segmented region.

classes = [
    "Sky"
    "Building"
    "Pole"
    "Road"
    "Pavement"
    "Tree"
    "SignSymbol"
    "Fence"
    "Car"
    "Pedestrian"
    "Bicyclist"
    ];

cmap = camvidColorMap();
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SegmentedImage = labeloverlay(im,argmax,'ColorMap',cmap);
figure
imshow(SegmentedImage);
pixelLabelColorbar(cmap,classes);

References

[1] Badrinarayanan, Vijay, Alex Kendall, and Roberto Cipolla. "SegNet: A Deep Convolutional
Encoder-Decoder Architecture for Image Segmentation." arXiv preprint arXiv:1511.00561, 2015.

[2] Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. "Semantic object classes in video: A
high-definition ground truth database." Pattern Recognition Letters Vol 30, Issue 2, 2009, pp 88-97.

See Also
Functions
coder.checkGpuInstall | codegen | coder.DeepLearningConfig |
coder.loadDeepLearningNetwork

Objects
coder.gpuConfig | coder.gpuEnvConfig | coder.CuDNNConfig
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Related Examples
• “Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox)
• “Semantic Segmentation on NVIDIA DRIVE” (MATLAB Coder Support Package for NVIDIA

Jetson and NVIDIA DRIVE Platforms)
• “Train and Deploy Fully Convolutional Networks for Semantic Segmentation” on page 4-157
• “Code Generation for Semantic Segmentation Network That Uses U-net” on page 4-169

More About
• “Getting Started with Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox)
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Train and Deploy Fully Convolutional Networks for Semantic
Segmentation

This example shows how to train and deploy a fully convolutional semantic segmentation network on
an NVIDIA® GPU by using GPU Coder™.

A semantic segmentation network classifies every pixel in an image, resulting in an image that is
segmented by class. Applications for semantic segmentation include road segmentation for
autonomous driving and cancer cell segmentation for medical diagnosis. To learn more, see “Getting
Started with Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox).

To illustrate the training procedure, this example trains FCN-8s [1], one type of convolutional neural
network (CNN) designed for semantic image segmentation. Other types of networks for semantic
segmentation include fully convolutional networks, such as SegNet and U-Net. You can apply this
training procedure to those networks too.

This example uses the CamVid dataset [2] from the University of Cambridge for training. This data
set is a collection of images containing street-level views obtained while driving. The data set
provides pixel-level labels for 32 semantic classes including car, pedestrian, and road.

Third-party Prerequisites

Required

• CUDA® enabled NVIDIA GPU and compatible driver.

Optional

• NVIDIA CUDA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For information on the supported versions

of the compilers and libraries, see “Third-Party Hardware”. For setting up the environment
variables, see “Setting Up the Prerequisite Products”.

Verify GPU Environment

Use the coder.checkGpuInstall function to verify that the compilers and libraries necessary for
running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Setup

This example creates the fully convolutional semantic segmentation network with weights initialized
from the VGG-16 network. The vgg16 function checks for the existence of the Deep Learning Toolbox
Model for VGG-16 Network support package and returns a pretrained VGG-16 model.

vgg16();

 Train and Deploy Fully Convolutional Networks for Semantic Segmentation

4-157

http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/


Download a pretrained version of FCN. This pretrained model enables you to run the entire example
without waiting for the training to complete. The doTraining flag controls whether the example uses
the trained network of the example or the pretrained FCN network for code generation.

doTraining = false;
if ~doTraining
    pretrainedURL = 'https://www.mathworks.com/supportfiles/gpucoder/cnn_models/fcn/FCN8sCamVid.mat';
    disp('Downloading pretrained FCN (448 MB)...');
    websave('FCN8sCamVid.mat',pretrainedURL);
end

Downloading pretrained FCN (448 MB)...

Download CamVid Dataset

Download the CamVid dataset from these URLs.

imageURL = 'http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/files/701_StillsRaw_full.zip';
labelURL = 'http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/data/LabeledApproved_full.zip';

outputFolder = fullfile(pwd,'CamVid');

if ~exist(outputFolder, 'dir')
   
    mkdir(outputFolder)
    labelsZip = fullfile(outputFolder,'labels.zip');
    imagesZip = fullfile(outputFolder,'images.zip');   
    
    disp('Downloading 16 MB CamVid dataset labels...'); 
    websave(labelsZip, labelURL);
    unzip(labelsZip, fullfile(outputFolder,'labels'));
    
    disp('Downloading 557 MB CamVid dataset images...');  
    websave(imagesZip, imageURL);       
    unzip(imagesZip, fullfile(outputFolder,'images'));    
end

The data download time depends on your Internet connection. The example execution does not
proceed until the download operation is complete. Alternatively, use your web browser to first
download the data set to your local disk. Then, use the outputFolder variable to point to the location
of the downloaded file.

Load CamVid Images

Use imageDatastore to load CamVid images. The imageDatastore enables you to efficiently load a
large collection of images onto a disk.

imgDir = fullfile(outputFolder,'images','701_StillsRaw_full');
imds = imageDatastore(imgDir);

Display one of the images.

I = readimage(imds,25);
I = histeq(I);
imshow(I)
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Load CamVid Pixel-Labeled Images

Use pixelLabelDatastore (Computer Vision Toolbox) to load CamVid pixel label image data. A
pixelLabelDatastore encapsulates the pixel label data and the label ID to a class name mapping.

Following the training method described in the SegNet paper [3], group the 32 original classes in
CamVid to 11 classes. Specify these classes.

classes = [
    "Sky"
    "Building"
    "Pole"
    "Road"
    "Pavement"
    "Tree"
    "SignSymbol"
    "Fence"
    "Car"
    "Pedestrian"
    "Bicyclist"
    ];
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To reduce 32 classes into 11 classes, multiple classes from the original data set are grouped together.
For example, "Car" is a combination of "Car", "SUVPickupTruck", "Truck_Bus", "Train", and
"OtherMoving". Return the grouped label IDs by using the camvidPixelLabelIDs supporting function.

labelIDs = camvidPixelLabelIDs();

Use the classes and label IDs to create the pixelLabelDatastore.

labelDir = fullfile(outputFolder,'labels');
pxds = pixelLabelDatastore(labelDir,classes,labelIDs);

Read and display one of the pixel-labeled images by overlaying it on top of an image.

C = readimage(pxds,25);
cmap = camvidColorMap;
B = labeloverlay(I,C,'ColorMap',cmap);
imshow(B)
pixelLabelColorbar(cmap,classes);

Areas with no color overlay do not have pixel labels and are not used during training.
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Analyze Data Set Statistics

To see the distribution of class labels in the CamVid dataset, use countEachLabel (Computer Vision
Toolbox). This function counts the number of pixels by class label.

tbl = countEachLabel(pxds)

tbl=11×3 table
         Name         PixelCount    ImagePixelCount
    ______________    __________    _______________

    {'Sky'       }    7.6801e+07      4.8315e+08   
    {'Building'  }    1.1737e+08      4.8315e+08   
    {'Pole'      }    4.7987e+06      4.8315e+08   
    {'Road'      }    1.4054e+08      4.8453e+08   
    {'Pavement'  }    3.3614e+07      4.7209e+08   
    {'Tree'      }    5.4259e+07       4.479e+08   
    {'SignSymbol'}    5.2242e+06      4.6863e+08   
    {'Fence'     }    6.9211e+06       2.516e+08   
    {'Car'       }    2.4437e+07      4.8315e+08   
    {'Pedestrian'}    3.4029e+06      4.4444e+08   
    {'Bicyclist' }    2.5912e+06      2.6196e+08   

Visualize the pixel counts by class.

frequency = tbl.PixelCount/sum(tbl.PixelCount);

bar(1:numel(classes),frequency)
xticks(1:numel(classes)) 
xticklabels(tbl.Name)
xtickangle(45)
ylabel('Frequency')
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Ideally, all classes have an equal number of observations. The classes in CamVid are imbalanced,
which is a common issue in automotive data sets of street scenes. Such scenes have more sky,
building, and road pixels than pedestrian and bicyclist pixels because sky, buildings, and roads cover
more area in the image. If not handled correctly, this imbalance can be detrimental to the learning
process because the learning is biased in favor of the dominant classes. Later on in this example, you
use class weighting to handle this issue.

Resize CamVid Data

The images in the CamVid data set are 720-by-960. To reduce training time and memory usage, resize
the images and pixel label images to 360-by-480 by using the resizeCamVidImages and
resizeCamVidPixelLabels supporting functions.

imageFolder = fullfile(outputFolder,'imagesResized',filesep);
imds = resizeCamVidImages(imds,imageFolder);

labelFolder = fullfile(outputFolder,'labelsResized',filesep);
pxds = resizeCamVidPixelLabels(pxds,labelFolder);
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Prepare Training and Test Sets

SegNet is trained by using 60% of the images from the dataset. The rest of the images are used for
testing. The following code randomly splits the image and pixel label data into a training set and a
test set.

[imdsTrain,imdsTest,pxdsTrain,pxdsTest] = partitionCamVidData(imds,pxds);

The 60/40 split results in the following number of training and test images:

numTrainingImages = numel(imdsTrain.Files)

numTrainingImages = 421

numTestingImages = numel(imdsTest.Files)

numTestingImages = 280

Create Network

Use fcnLayers (Computer Vision Toolbox) to create fully convolutional network layers initialized by
using VGG-16 weights. The fcnLayers function performs the network transformations to transfer
the weights from VGG-16 and adds the additional layers required for semantic segmentation. The
output of the fcnLayers function is a LayerGraph object representing FCN. A LayerGraph object
encapsulates the network layers and the connections between the layers.

imageSize = [360 480];
numClasses = numel(classes);
lgraph = fcnLayers(imageSize,numClasses);

The image size is selected based on the size of the images in the dataset. The number of classes is
selected based on the classes in CamVid.

Balance Classes by Using Class Weighting

The classes in CamVid are not balanced. To improve training, you can use the pixel label counts
computed earlier by the countEachLabel (Computer Vision Toolbox) function and calculate the
median frequency class weights [3].

imageFreq = tbl.PixelCount ./ tbl.ImagePixelCount;
classWeights = median(imageFreq) ./ imageFreq;

Specify the class weights by using a pixelClassificationLayer (Computer Vision Toolbox).

pxLayer = pixelClassificationLayer('Name','labels','Classes',tbl.Name,'ClassWeights',classWeights)

pxLayer = 
  PixelClassificationLayer with properties:

            Name: 'labels'
         Classes: [11×1 categorical]
    ClassWeights: [11×1 double]
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'
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Update the SegNet network that has the new pixelClassificationLayer by removing the current
pixelClassificationLayer and adding the new layer. The current pixelClassificationLayer is named
'pixelLabels'. Remove it by using the removeLayers (Deep Learning Toolbox) function, add the new
one by using the addLayers (Deep Learning Toolbox) function, and connect the new layer to the rest
of the network by using the connectLayers (Deep Learning Toolbox) function.

lgraph = removeLayers(lgraph,'pixelLabels');
lgraph = addLayers(lgraph, pxLayer);
lgraph = connectLayers(lgraph,'softmax','labels');

Select Training Options

The optimization algorithm for training is Adam, which is derived from adaptive moment estimation.
Use the trainingOptions (Deep Learning Toolbox) function to specify the hyperparameters used
for Adam.

options = trainingOptions('adam', ...
    'InitialLearnRate',1e-3, ...
    'MaxEpochs',100, ...  
    'MiniBatchSize',4, ...
    'Shuffle','every-epoch', ...
    'CheckpointPath', tempdir, ...
    'VerboseFrequency',2);

A 'MiniBatchSize' of four reduces memory usage while training. You can increase or decrease this
value based on the amount of GPU memory in your system.

'CheckpointPath' is set to a temporary location. This name-value pair enables the saving of network
checkpoints at the end of every training epoch. If training is interrupted due to a system failure or
power outage, you can resume training from the saved checkpoint. Make sure that the location
specified by 'CheckpointPath' has enough space to store the network checkpoints.

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation, you can add more variety to the training data without
increasing the number of labeled training samples. To apply the same random transformation to both
image and pixel label data use datastore combine and transform. First, combine imdsTrain and
pxdsTrain.

dsTrain = combine(imdsTrain, pxdsTrain);

Next, use datastore transform to apply the desired data augmentation defined in the supporting
function augmentImageAndLabel. Here, random left/right reflection and random X/Y translation of
+/- 10 pixels is used for data augmentation.

xTrans = [-10 10];
yTrans = [-10 10];
dsTrain = transform(dsTrain, @(data)augmentImageAndLabel(data,xTrans,yTrans));

Note that data augmentation is not applied to the test and validation data. Ideally, test and validation
data should be representative of the original data and is left unmodified for unbiased evaluation.

Start Training

Start training using trainNetwork if the doTraining flag is true. Otherwise, load a pretrained
network.
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The training was verified on an NVIDIA™ Titan Xp with 12 GB of GPU memory. If your GPU has less
memory, you might run out of memory. If you do not have enough memory in your system, try
lowering the MiniBatchSize property in trainingOptions to 1. Training this network takes about
5 hours or longer depending on your GPU hardware.

doTraining = false;
if doTraining    
    [net, info] = trainNetwork(dsTrain,lgraph,options);
    save('FCN8sCamVid.mat','net');
end

Save the DAG network object as a MAT-file named FCN8sCamVid.mat. This MAT-file is used during
code generation.

Perform MEX Code-generation

The fcn_predict.m function takes an image input and performs prediction on the image by using the
deep learning network saved in FCN8sCamVid.mat file. The function loads the network object from
FCN8sCamVid.mat into a persistent variable mynet and reuses the persistent object on subsequent
prediction calls.

type('fcn_predict.m')

function out = fcn_predict(in)
%#codegen
% Copyright 2018-2019 The MathWorks, Inc.

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('FCN8sCamVid.mat');
end

% pass in input
out = predict(mynet,in);

Generate a GPU Configuration object for MEX target setting target language to C++. Use the
coder.DeepLearningConfig function to create a cuDNN deep learning configuration object and
assign it to the DeepLearningConfig property of the GPU code configuration object. Run the
codegen command specifying an input size [360, 480, 3]. This size corresponds to the input layer of
FCN.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
codegen -config cfg fcn_predict -args {ones(360,480,3,'uint8')} -report

Code generation successful: View report

Run Generated MEX

Load and display an input image.

im = imread('testImage.png');
imshow(im);
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Run prediction by calling fcn_predict_mex on the input image.

predict_scores = fcn_predict_mex(im);

The predict_scores variable is a three-dimensional matrix having 11 channels corresponding to
the pixel-wise prediction scores for every class. Compute the channel by using the maximum
prediction score to get pixel-wise labels.

[~,argmax] = max(predict_scores,[],3);

Overlay the segmented labels on the input image and display the segmented region.

classes = [
    "Sky"
    "Building"
    "Pole"
    "Road"
    "Pavement"
    "Tree"
    "SignSymbol"
    "Fence"
    "Car"
    "Pedestrian"
    "Bicyclist"
    ];
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cmap = camvidColorMap();
SegmentedImage = labeloverlay(im,argmax,'ColorMap',cmap);
figure
imshow(SegmentedImage);
pixelLabelColorbar(cmap,classes);

Cleanup

Clear the static network object that was loaded in memory.

clear mex;

Supporting Functions

function data = augmentImageAndLabel(data, xTrans, yTrans)
% Augment images and pixel label images using random reflection and
% translation.

for i = 1:size(data,1)
    
    tform = randomAffine2d(...
        'XReflection',true,...
        'XTranslation', xTrans, ...
        'YTranslation', yTrans);
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    % Center the view at the center of image in the output space while
    % allowing translation to move the output image out of view.
    rout = affineOutputView(size(data{i,1}), tform, 'BoundsStyle', 'centerOutput');
    
    % Warp the image and pixel labels using the same transform.
    data{i,1} = imwarp(data{i,1}, tform, 'OutputView', rout);
    data{i,2} = imwarp(data{i,2}, tform, 'OutputView', rout);
    
end
end
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Code Generation for Semantic Segmentation Network That
Uses U-net

This example shows code generation for an image segmentation application that uses deep learning.
It uses the codegen command to generate a MEX function that performs prediction on a DAG
Network object for U-Net, a deep learning network for image segmentation.

For a similar example covering segmentation of images by using U-Net without the codegen
command, see “Semantic Segmentation of Multispectral Images Using Deep Learning” (Image
Processing Toolbox).

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA® enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

Use the coder.checkGpuInstall function to verify that the compilers and libraries necessary for
running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Segmentation Network

U-Net [1] is a type of convolutional neural network (CNN) designed for semantic image segmentation.
In U-Net, the initial series of convolutional layers are interspersed with max pooling layers,
successively decreasing the resolution of the input image. These layers are followed by a series of
convolutional layers interspersed with upsampling operators, successively increasing the resolution
of the input image. Combining these two series paths forms a U-shaped graph. The network was
originally trained for and used to perform prediction on biomedical image segmentation applications.
This example demonstrates the ability of the network to track changes in forest cover over time.
Environmental agencies track deforestation to assess and qualify the environmental and ecological
health of a region.

Deep-learning-based semantic segmentation can yield a precise measurement of vegetation cover
from high-resolution aerial photographs. One challenge is differentiating classes that have similar
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visual characteristics, such as trying to classify a green pixel as grass, shrubbery, or tree. To increase
classification accuracy, some data sets contain multispectral images that provide additional
information about each pixel. For example, the Hamlin Beach State Park data set supplements the
color images with near-infrared channels that provide a clearer separation of the classes.

This example uses the Hamlin Beach State Park Data [2] along with a pretrained U-Net network in
order to correctly classify each pixel.

The U-Net used is trained to segment pixels belonging to 18 classes which includes:

0. Other Class/Image Border      7. Picnic Table         14. Grass
1. Road Markings                 8. Black Wood Panel     15. Sand
2. Tree                          9. White Wood Panel     16. Water (Lake)
3. Building                     10. Orange Landing Pad   17. Water (Pond)
4. Vehicle (Car, Truck, or Bus) 11. Water Buoy           18. Asphalt (Parking Lot/Walkway)
5. Person                       12. Rocks
6. Lifeguard Chair              13. Other Vegetation

The segmentImageUnet Entry-Point Function

The segmentImageUnet.m entry-point function performs patchwise semantic segmentation on the
input image by using the multispectralUnet network found in the multispectralUnet.mat file. The
function loads the network object from the multispectralUnet.mat file into a persistent variable
mynet and reuses the persistent variable on subsequent prediction calls.

type('segmentImageUnet.m')

function out = segmentImageUnet(im,patchSize,trainedNet)  
%  OUT = segmentImageUnet(IM,patchSize,trainedNet) returns a semantically
%  segmented image, segmented using the multi-spectral Unet specified in
%  trainedNet. The segmentation is performed over each patch of size
%  patchSize.
%
% Copyright 2019-2022 The MathWorks, Inc.

%#codegen
persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork(trainedNet);
end

[height, width, nChannel] = size(im);
patch = coder.nullcopy(zeros([patchSize, nChannel-1]));

% Pad image to have dimensions as multiples of patchSize
padSize = zeros(1,2);
padSize(1) = patchSize(1) - mod(height, patchSize(1));
padSize(2) = patchSize(2) - mod(width, patchSize(2));

im_pad = padarray (im, padSize, 0, 'post');
[height_pad, width_pad, ~] = size(im_pad);

out = zeros([size(im_pad,1), size(im_pad,2)], 'uint8');

for i = 1:patchSize(1):height_pad    
    for j =1:patchSize(2):width_pad        
        for p = 1:nChannel-1              
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            patch(:,:,p) = squeeze( im_pad( i:i+patchSize(1)-1,...
                                            j:j+patchSize(2)-1,...
                                            p));            
        end
         
        % Pass in input
        segmentedLabels = activations(mynet, patch, 'Segmentation-Layer');
        
        % Takes the max of each channel (6 total at this point)
        [~,L] = max(segmentedLabels,[],3);
        patch_seg = uint8(L);
        
        % Populate section of output
        out(i:i+patchSize(1)-1, j:j+patchSize(2)-1) = patch_seg;
       
    end
end

% Remove the padding
out = out(1:height, 1:width);

Get Pretrained U-Net Network

This example uses the multispectralUnet MAT-file containing the pretrained U-Net network. This
file is approximately 117 MB in size. Download the file from the MathWorks website.

trainedUnetFile = matlab.internal.examples.downloadSupportFile('vision/data','multispectralUnet.mat');

U-Net is a DAG network that contains 58 layers including convolution, max pooling, depth
concatenation, and the pixel classification output layers.

load(trainedUnetFile);
disp(net)

  DAGNetwork with properties:

         Layers: [58×1 nnet.cnn.layer.Layer]
    Connections: [61×2 table]
     InputNames: {'ImageInputLayer'}
    OutputNames: {'Segmentation-Layer'}

To view the network architecture, use the analyzeNetwork (Deep Learning Toolbox) function.

analyzeNetwork(net);

Prepare Data

This example uses the high-resolution multispectral data from [2]. The image set was captured using
a drone over the Hamlin Beach State Park, NY. The data contains labeled training, validation, and test
sets, with 18 object class labels. The size of the data file is ~3.0 GB.

Download the MAT-file version of the data set using the downloadHamlinBeachMSIData helper
function. This function is attached to the example as a supporting file.

if ~exist(fullfile(pwd,'data'),'dir')
    url = 'http://www.cis.rit.edu/~rmk6217/rit18_data.mat';
    downloadHamlinBeachMSIData(url,pwd+"/data/");
end
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Load and examine the data in MATLAB.

load(fullfile(pwd,'data','rit18_data','rit18_data.mat'));

% Examine data
whos test_data

  Name           Size                         Bytes  Class     Attributes

  test_data      7x12446x7654            1333663576  uint16              

The image has seven channels. The RGB color channels are the third, second, and first image
channels. The next three channels correspond to the near-infrared bands and highlight different
components of the image based on their heat signatures. Channel 7 is a mask that indicates the valid
segmentation region.

The multispectral image data is arranged as numChannels-by-width-by-height arrays. In MATLAB,
multichannel images are arranged as width-by-height-by-numChannels arrays. To reshape the data so
that the channels are in the third dimension, use the helper function,
switchChannelsToThirdPlane.

test_data  = switchChannelsToThirdPlane(test_data);

% Confirm data has the correct structure (channels last).
whos test_data

  Name               Size                     Bytes  Class     Attributes

  test_data      12446x7654x7            1333663576  uint16              

Run MEX Code Generation

To generate CUDA code for the segmentImageUnet.m entry-point function, create a GPU
Configuration object for a MEX target setting the target language to C++. Use the
coder.DeepLearningConfig function to create a CuDNN deep learning configuration object and
assign it to the DeepLearningConfig property of the GPU code configuration object. Run the
codegen command specifying an input size of 12446-by-7654-by-7 and a patch size of 1024-by-1024.
These values correspond to the entire test_data size. The smaller patch sizes speed up inference.
To see how the patches are calculated, see the segmentImageUnet entry-point function.

cfg = coder.gpuConfig('mex');
cfg.ConstantInputs = 'Remove';
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
inputArgs = {ones(size(test_data),'uint16'),...
    coder.Constant([1024 1024]),coder.Constant(trainedUnetFile)};

codegen -config cfg segmentImageUnet -args inputArgs -report

Code generation successful: View report

Run Generated MEX to Predict Results for test_data

This segmentImageUnet function takes in the data to test (test_data) and a vector containing the
dimensions of the patch size to use. Take patches of the image, predict the pixels in a particular
patch, then combine all the patches together. Due to the size of test data (12446-by-7654-by-7), it is
easier to process such a large image in patches.
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segmentedImage = segmentImageUnet_mex(test_data);

To extract only the valid portion of the segmentation, multiply the segmented image by the mask
channel of the test data.

segmentedImage = uint8(test_data(:,:,7)~=0) .* segmentedImage;

Because the output of the semantic segmentation is noisy, remove the noise and stray pixels by using
the medfilt2 function.

segmentedImage = medfilt2(segmentedImage,[5,5]);

Display U-Net Segmented test_data

The following line of code creates a vector of the class names.

classNames = [ "RoadMarkings","Tree","Building","Vehicle","Person", ...
               "LifeguardChair","PicnicTable","BlackWoodPanel",...
               "WhiteWoodPanel","OrangeLandingPad","Buoy","Rocks",...
               "LowLevelVegetation","Grass_Lawn","Sand_Beach",...
               "Water_Lake","Water_Pond","Asphalt"];

Overlay the labels on the segmented RGB test image and add a color bar to the segmentation image.

cmap = jet(numel(classNames));
B = labeloverlay(imadjust(test_data(:,:,[3,2,1]),[0 0.6],[0.1 0.9],0.55),...
    segmentedImage,'Transparency',0.8,'Colormap',cmap);
figure
imshow(B)

N = numel(classNames);
ticks = 1/(N*2):1/N:1;
colorbar('TickLabels',cellstr(classNames),'Ticks',ticks,'TickLength',0,...
    'TickLabelInterpreter','none');
colormap(cmap)
title('Segmented Image');
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Code Generation for Denoising Deep Neural Network

This example shows how to generate CUDA® MEX from MATLAB® code and denoise grayscale
images by using the denoising convolutional neural network (DnCNN [1]). You can use the denoising
network to estimate noise in a noisy image, and then remove it to obtain a denoised image.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA® enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

Use the coder.checkGpuInstall function to verify that the compilers and libraries necessary for
running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Load Noisy Image

Load a noisy grayscale image into the workspace and display the image.

noisyI = imread('noisy_cameraman.png');
figure
imshow(noisyI);
title('Noisy Image');
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Get Pretrained Denoising Network

Call the getDenoisingNetwork helper function to get a pretrained image denoising deep neural
network.

net = getDenoisingNetwork;

The getDenoisingNetwork function returns a pretrained DnCNN [1] that you can use to detect
additive white Gaussian noise (AWGN) that has unknown levels. The network is a feed-forward
denoising convolutional network that implements a residual learning technique to predict a residual
image. In other words, DnCNN [1] computes the difference between a noisy image and the latent
clean image.

The network contains 59 layers including convolution, batch normalization, and regression output
layers. To display an interactive visualization of the deep learning network architecture, use the
analyzeNetwork (Deep Learning Toolbox) function.

analyzeNetwork(net);

The denoisenet_predict Function

The denoisenet_predict entry-point function takes a noisy image input and returns a denoised
image by using a pretrained denoising network.

The function loads the network object returned by getDenoisingNetwork into a persistent variable
mynet and reuses the persistent object on subsequent prediction calls.

type denoisenet_predict

function I = denoisenet_predict(in)
%#codegen
% Copyright 2018-2021 The MathWorks, Inc.
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persistent mynet;

if isempty(mynet)   
    mynet = coder.loadDeepLearningNetwork('getDenoisingNetwork', 'DnCNN');
end

% The activations methods extracts the output from the last layer. The
% 'OutputAs' 'channels' name-value pair argument is used inorder to call
% activations on an image whose input dimensions are greater than or equal
% to the network's imageInputLayer.InputSize.

res = mynet.activations(in, 59,'OutputAs','channels');

% Once the noise is estimated, we subtract the noise from the original
% image to obtain a denoised image.

I = in - res;
  

Here, the activations method is called with the layer numeric index as 59 to extract the
activations from the final layer of the network. The 'OutputAs' 'channels' name-value pair
argument computes activations on images larger than the imageInputLayer.InputSize of the
network.

The activations method returns an estimate of the noise in the input image by using the
pretrained denoising image.

Once the noise is estimated, subtract the noise from the original image to obtain a denoised image.

Run MEX Code Generation

To generate CUDA code for the denoisenet_predict.m entry-point function, create a GPU code
configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig function to create a CuDNN deep learning configuration object and
assign it to the DeepLearningConfig property of the GPU code configuration object. Run the
codegen command specifying an input size of [256,256]. This value corresponds to the size of the
noisy image that you intend to denoise.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
codegen -config cfg denoisenet_predict -args {ones(256,256,'single')} -report

Code generation successful: View report

Run Generated MEX

The DnCNN [1] is trained on input images having an input range [0,1]. Call the im2single (Image
Processing Toolbox) function on noisyI to rescale the values from [0,255] to [0,1].

Call denoisenet_predict_predict on the rescaled input image.

denoisedI = denoisenet_predict_mex(im2single(noisyI));
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View Denoised Image

figure
imshowpair(noisyI,denoisedI,'montage');
title('Noisy Image (left) and Denoised Image (right)');
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Code Generation for Object Detection by Using YOLO v2

This example shows how to generate CUDA® MEX for a you only look once (YOLO) v2 object
detector. A YOLO v2 object detection network is composed of two subnetworks. A feature extraction
network followed by a detection network. This example generates code for the network trained in the
Object Detection Using YOLO v2 Deep Learning example from Computer Vision Toolbox™. For more
information, see “Object Detection Using YOLO v2 Deep Learning” (Computer Vision Toolbox). You
can modify this example to generate CUDA® MEX for the network imported in the Import Pretrained
ONNX YOLO v2 Object Detector example from Computer Vision Toolbox™. For more information, see
“Import Pretrained ONNX YOLO v2 Object Detector” (Computer Vision Toolbox).

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA® enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

Use the coder.checkGpuInstall function to verify that the compilers and libraries necessary for
running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Get Pretrained DAGNetwork

This example uses the yolov2ResNet50VehicleExample MAT-file containing the pretrained
network. The file is approximately 98MB in size. Download the file from the MathWorks website.

matFile = matlab.internal.examples.downloadSupportFile('vision/data','yolov2ResNet50VehicleExample.mat');
vehicleDetector = load(matFile);
net = vehicleDetector.detector.Network

net = 
  DAGNetwork with properties:

         Layers: [150×1 nnet.cnn.layer.Layer]
    Connections: [162×2 table]
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     InputNames: {'input_1'}
    OutputNames: {'yolov2OutputLayer'}

The DAG network contains 150 layers including convolution, ReLU, and batch normalization layers
and the YOLO v2 transform and YOLO v2 output layers. To display an interactive visualization of the
deep learning network architecture, use the analyzeNetwork (Deep Learning Toolbox) function.

analyzeNetwork(net);

The yolov2_detect Entry-Point Function

The yolov2_detect.m entry-point function takes an image input and runs the detector on the image
using the deep learning network saved in the yolov2ResNet50VehicleExample.mat file. The
function loads the network object from the yolov2ResNet50VehicleExample.mat file into a
persistent variable yolov2Obj and reuses the persistent object on subsequent detection calls.

type('yolov2_detect.m')

function outImg = yolov2_detect(in,matFile)

%   Copyright 2018-2021 The MathWorks, Inc.

persistent yolov2Obj;

if isempty(yolov2Obj)
    yolov2Obj = coder.loadDeepLearningNetwork(matFile);
end

% Call to detect method
[bboxes,~,labels] = yolov2Obj.detect(in,'Threshold',0.5);

% Convert categorical labels to cell array of charactor vectors
labels = cellstr(labels);

% Annotate detections in the image.
outImg = insertObjectAnnotation(in,'rectangle',bboxes,labels);

Run MEX Code Generation

To generate CUDA code for the entry-point function, create a GPU code configuration object for a
MEX target and set the target language to C++. Use the coder.DeepLearningConfig function to
create a CuDNN deep learning configuration object and assign it to the DeepLearningConfig
property of the GPU code configuration object. Run the codegen command specifying an input size of
224-by-224-by-3. This value corresponds to the input layer size of YOLOv2.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
cfg.GenerateReport = true;
inputArgs = {ones(224,224,3,'uint8'),coder.Constant(matFile)};

codegen -config cfg yolov2_detect -args inputArgs

Code generation successful: View report
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Run Generated MEX

Set up the video file reader and read the input video. Create a video player to display the video and
the output detections.

videoFile = 'highway_lanechange.mp4';
videoFreader = vision.VideoFileReader(videoFile,'VideoOutputDataType','uint8');
depVideoPlayer = vision.DeployableVideoPlayer('Size','Custom','CustomSize',[640 480]);

Read the video input frame-by-frame and detect the vehicles in the video using the detector.

cont = ~isDone(videoFreader);
while cont
    I = step(videoFreader);
    in = imresize(I,[224,224]);
    out = yolov2_detect_mex(in,matFile);
    step(depVideoPlayer, out);
    % Exit the loop if the video player figure window is closed
    cont = ~isDone(videoFreader) && isOpen(depVideoPlayer); 
end
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Code Generation for a Sequence-to-Sequence LSTM Network

This example demonstrates how to generate CUDA® code for a long short-term memory (LSTM)
network. The example generates a MEX application that makes predictions at each step of an input
timeseries. Two methods are demonstrated: a method using a standard LSTM network, and a method
leveraging the stateful behavior of the same LSTM network. This example uses accelerometer sensor
data from a smartphone carried on the body and makes predictions on the activity of the wearer. User
movements are classified into one of five categories, namely dancing, running, sitting, standing, and
walking. The example uses a pretrained LSTM network. For more information on training, see the
“Sequence Classification Using Deep Learning” (Deep Learning Toolbox) example from Deep
Learning Toolbox™.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

Use the coder.checkGpuInstall function to verify that the compilers and libraries necessary for
running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

The lstmnet_predict Entry-Point Function

A sequence-to-sequence LSTM network enables you to make different predictions for each individual
time step of a data sequence. The lstmnet_predict.m entry-point function takes an input sequence
and passes it to a trained LSTM network for prediction. Specifically, the function uses the LSTM
network trained in the Sequence to Sequence Classification Using Deep Learning example. The
function loads the network object from the lstmnet_predict.mat file into a persistent variable and
reuses the persistent object on subsequent prediction calls.

To display an interactive visualization of the network architecture and information about the network
layers, use the analyzeNetwork (Deep Learning Toolbox) function.

type('lstmnet_predict.m')
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function out = lstmnet_predict(in) %#codegen

% Copyright 2019-2021 The MathWorks, Inc. 

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('lstmnet.mat');
end

% pass in input   
out = predict(mynet,in); 

Generate CUDA MEX

To generate CUDA MEX for the lstmnet_predict.m entry-point function, create a GPU
configuration object and specify the target to be MEX. Set the target language to C++. Create a deep
learning configuration object that specifies the target library as cuDNN. Attach this deep learning
configuration object to the GPU configuration object.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');

At compile time, GPU Coder™ must know the data types of all the inputs to the entry-point function.
Specify the type and size of the input argument to the codegen command by using the
coder.typeof function. For this example, the input is of double data type with a feature dimension
value of three and a variable sequence length. Specifying the sequence length as variable-sized
enables us to perform prediction on an input sequence of any length.

matrixInput = coder.typeof(double(0),[3 Inf],[false true]);

Run the codegen command.

codegen -config cfg lstmnet_predict -args {matrixInput} -report

Code generation successful: View report

Run Generated MEX on Test Data

Load the HumanActivityValidate MAT-file. This MAT-file stores the variable XValidate that
contains sample timeseries of sensor readings on which you can test the generated code. Call
lstmnet_predict_mex on the first observation.

load HumanActivityValidate
YPred1 = lstmnet_predict_mex(XValidate{1});

YPred1 is a 5-by-53888 numeric matrix containing the probabilities of the five classes for each of the
53888 time steps. For each time step, find the predicted class by calculating the index of the
maximum probability.

[~, maxIndex] = max(YPred1, [], 1);

Associate the indices of max probability to the corresponding label. Display the first ten labels. From
the results, you can see that the network predicted the human to be sitting for the first ten time
steps.
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labels = categorical({'Dancing', 'Running', 'Sitting', 'Standing', 'Walking'});
predictedLabels1 = labels(maxIndex);
disp(predictedLabels1(1:10)')

     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 

Compare Predictions with Test Data

Use a plot to compare the MEX output data with the test data.

figure
plot(predictedLabels1,'.-');
hold on
plot(YValidate{1});
hold off

xlabel("Time Step")
ylabel("Activity")
title("Predicted Activities")
legend(["Predicted" "Test Data"])
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Call Generated MEX on an Observation with a Different Sequence Length

Call lstmnet_predict_mex on the second observation with a different sequence length. In this
example, XValidate{2} has a sequence length of 64480 whereas XValidate{1} had a sequence
length of 53888. The generated code handles prediction correctly because we specified the sequence
length dimension to be variable-size.

YPred2 = lstmnet_predict_mex(XValidate{2});
[~, maxIndex] = max(YPred2, [], 1);
predictedLabels2 = labels(maxIndex);
disp(predictedLabels2(1:10)')

     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 

Generate MEX that takes in Multiple Observations

If you want to perform prediction on many observations at once, you can group the observations
together in a cell array and pass the cell array for prediction. The cell array must be a column cell

 Code Generation for a Sequence-to-Sequence LSTM Network

4-187



array, and each cell must contain one observation. Each observation must have the same feature
dimension, but the sequence lengths may vary. In this example, XValidate contains five
observations. To generate a MEX that can take XValidate as input, specify the input type to be a 5-
by-1 cell array. Further, specify that each cell be of the same type as matrixInput, the type you
specified for the single observation in the previous codegen command.

matrixInput = coder.typeof(double(0),[3 Inf],[false true]);
cellInput = coder.typeof({matrixInput}, [5 1]);

codegen -config cfg lstmnet_predict -args {cellInput} -report

Code generation successful: View report

YPred3 = lstmnet_predict_mex(XValidate);

The output is a 5-by-1 cell array of predictions for the five observations passed in.

disp(YPred3)

    {5×53888 single}
    {5×64480 single}
    {5×53696 single}
    {5×56416 single}
    {5×50688 single}

Generate MEX with Stateful LSTM

Instead of passing the entire timeseries to predict in one step, we can run prediction on an input by
streaming in one timestep at a time, making use of the function predictAndUpdateState (Deep
Learning Toolbox) This function takes in an input, produces an output prediction, and updates the
internal state of the network so that future predictions take this initial input into account.

The entry-point function lstmnet_predict_and_update.m takes in a single-timestep input and
processes the input using the predictAndUpdateState (Deep Learning Toolbox) function.
predictAndUpdateState outputs a prediction for the input timestep and updates the network so
that subsequent inputs are treated as subsequent timesteps of the same sample. After passing in all
timesteps one at a time, the resulting output is the same as if all timesteps were passed in as a single
input.

type('lstmnet_predict_and_update.m')

function out = lstmnet_predict_and_update(in) %#codegen

% Copyright 2019-2021 The MathWorks, Inc. 

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('lstmnet.mat');
end

% pass in input
[mynet, out] = predictAndUpdateState(mynet,in);

Run codegen on this new design file. Since we are taking in a single timestep each call, we specify
matrixInput to have a fixed sequence dimension of 1 instead of a variable sequence length.
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matrixInput = coder.typeof(double(0),[3 1]);
codegen -config cfg lstmnet_predict_and_update -args {matrixInput} -report

Code generation successful: View report

Run the generated MEX on the first validation sample's first timestep.

firstSample = XValidate{1};
firstTimestep = firstSample(:,1);
YPredStateful = lstmnet_predict_and_update_mex(firstTimestep);
[~, maxIndex] = max(YPredStateful, [], 1);
predictedLabelsStateful1 = labels(maxIndex)

predictedLabelsStateful1 = categorical
     Sitting 

Compare the output label with the ground truth.

YValidate{1}(1)

ans = categorical
     Sitting 

See Also
Functions
coder.checkGpuInstall | codegen | coder.DeepLearningConfig |
coder.loadDeepLearningNetwork

Objects
coder.gpuConfig | coder.gpuEnvConfig | coder.CuDNNConfig | coder.TensorRTConfig

Related Examples
• “Sequence Classification Using Deep Learning” (Deep Learning Toolbox)
• “Code Generation for a Video Classification Network” on page 4-211

More About
• “Long Short-Term Memory Networks” (Deep Learning Toolbox)
• “Supported Networks, Layers, and Classes” on page 4-6
• “Load Pretrained Networks for Code Generation” on page 4-66
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Deep Learning Prediction on ARM Mali GPU

This example shows how to use the cnncodegen function to generate code for an image classification
application that uses deep learning on ARM® Mali GPUs. The example uses the MobileNet-v2 DAG
network to perform image classification. The generated code takes advantage of the ARM Compute
library for computer vision and machine learning.

Prerequisites

• ARM Mali GPU based hardware. For example, HiKey960 is one of the target platforms that
contains a Mali GPU.

• ARM Compute Library on the target ARM hardware built for the Mali GPU.
• Open source Computer Vision Library (OpenCV v2.4.9) on the target ARM hardware.
• Environment variables for the compilers and libraries. Ensure that the ARM_COMPUTE and the

LD_LIBRARY_PATH variables are set on the target platform. For information on the supported
versions of the compilers and libraries, see “Third-Party Hardware”. For setting up the
environment variables, see “Setting Up the Prerequisite Products”.

Get Pretrained DAGNetwork

Load the pretrained MobileNet-v2 network available in the Deep Learning Toolbox Model
for MobileNet-v2 Network.

net = mobilenetv2

net = 
  DAGNetwork with properties:

         Layers: [154×1 nnet.cnn.layer.Layer]
    Connections: [163×2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_Logits'}

The network contains 155 layers including convolution, batch normalization, softmax, and the
classification output layers. The analyzeNetwork() function displays an interactive plot of the
network architecture and a table containing information about the network layers.

analyzeNetwork(net);

Generate Code

For deep learning on ARM targets, you generate code on the host development computer. To build
and run the executable program, move the generated code to the ARM target platform. The target
platform must have an ARM Mali GPU. For example, HiKey960 is one of the target platforms on which
you can execute the code generated in this example.

Call the cnncodegen function, specifying the target library as arm-compute-mali.

cnncodegen(net,'targetlib','arm-compute-mali');
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Copy Generated Files to the Target

Move the generated codegen folder and other required files from the host development computer to
the target platform by using your preferred SCP (Secure Copy Protocol) or Secure Shell File Transfer
Protocol (SSH) client.

For example, on the Linux® platform, to transfer the files to the HiKey960, use the scp command
with the format:

system('sshpass -p [password] scp (sourcefile) [username]@[targetname]:~/');

system('sshpass -p password scp main_mobilenet_arm_generic.cpp username@targetname:~/');
system('sshpass -p password scp peppers_mobilenet.png username@targetname:~/');
system('sshpass -p password scp makefile_mobilenet_arm_generic.mk username@targetname:~/');
system('sshpass -p password scp synsetWords.txt username@targetname:~/');
system('sshpass -p password scp -r codegen username@targetname:~/');

On the Windows® platform, you can use the pscp tool that comes with a PuTTY installation. For
example:

system('pscp -pw password-r codegen username@targetname:/home/username');

PSCP utilities must be either on your PATH or in your current folder.

Build Executable

To build the library on the target platform, use the generated makefile cnnbuild_rtw.mk.

For example, to build the library on the HiKey960:

system('sshpass -p password ssh username@targetname' ...
' "make -C /home/username/codegen -f cnnbuild_rtw.mk"');

On the Windows platform, you can use the putty command with -ssh argument to log in and run the
make command. For example:

system('putty -ssh username@targetname -pw password');

To build and run the executable on the target platform, use the command with the format: make -
C /home/$(username) and ./execfile -f makefile_mobilenet_arm_generic.mk

For example, on the HiKey960:

make -C /home/usrname arm_mobilenet -f makefile_mobilenet_arm_generic.mk

Run the executable on the ARM platform specifying an input image file.

./mobilenet_exe peppers_mobilenet.png

The top five predictions for the input image file are:
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See Also
Functions
cnncodegen

See Also

More About
• “Supported Networks, Layers, and Classes” on page 4-6
• “Code Generation for Deep Learning Networks Targeting ARM Mali GPUs” on page 4-88
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Code Generation for Object Detection by Using Single Shot
Multibox Detector

This example shows how to generate CUDA® code for an SSD network (ssdObjectDetector object)
and take advantage of the NVIDIA® cuDNN and TensorRT libraries. An SSD network is based on a
feed-forward convolutional neural network that detect multiple objects within the image in a single
shot. SSD network can be thought of as having two sub-networks. A feature extraction network,
followed by a detection network.

This example generates code for the network trained in the Object Detection Using SSD Deep
Learning example from Computer Vision Toolbox™. For more information, see “Object Detection
Using SSD Deep Learning” (Computer Vision Toolbox). The Object Detection Using SSD Deep
Learning example uses ResNet-50 for feature extraction. The detection sub-network is a small CNN
compared to the feature extraction network and is composed of a few convolutional layers and layers
specific to SSD.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA enabled NVIDIA GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

Use the coder.checkGpuInstall function to verify that the compilers and libraries necessary for
running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Get Pretrained DAG Network

This example uses the ssdResNet50VehicleExample_20a MAT-file containing the pretrained SSD
network. This file is approximately 44 MB size. Download the file from the MathWorks website.

ssdNetFile = matlab.internal.examples.downloadSupportFile('vision/data','ssdResNet50VehicleExample_20a.mat');
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The DAG network contains 180 layers including convolution, ReLU, and batch normalization layers,
anchor box, SSD merge, focal loss, and other layers. To display an interactive visualization of the
deep learning network architecture, use the analyzeNetwork (Deep Learning Toolbox) function.

load(ssdNetFile);
analyzeNetwork(detector.Network);

The ssdObj_detect Entry-Point Function

The ssdObj_detect.m entry-point function takes an image input and runs the detector on the image
using the deep learning network saved in the ssdResNet50VehicleExample_20a.mat file. The
function loads the network object from the ssdResNet50VehicleExample_20a.mat file into a
persistent variable ssdObj and reuses the persistent object on subsequent detection calls.

type('ssdObj_detect.m')

function outImg = ssdObj_detect(in,matFile)

%   Copyright 2019-2022 The MathWorks, Inc.

persistent ssdObj;

if isempty(ssdObj)
    ssdObj = coder.loadDeepLearningNetwork(matFile);
end

% Pass in input
[bboxes,~,labels] = detect(ssdObj,in,'Threshold',0.5);

% Convert categorical labels to cell array of charactor vectors for 
% execution
labels = cellstr(labels);

% Annotate detections in the image.
if ~isempty(labels)
    outImg = insertObjectAnnotation(in,'rectangle',bboxes,labels);
else
    outImg = in;
end

Run MEX Code Generation

To generate CUDA code for the ssdObj_detect.m entry-point function, create a GPU code
configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig function to create a CuDNN deep learning configuration object and
assign it to the DeepLearningConfig property of the GPU code configuration object. Run the
codegen command specifying an input size of 300-by-300-by-3. This value corresponds to the input
layer size of SSD Network.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
inputArgs = {ones(300,300,3,'uint8'),coder.Constant(ssdNetFile)};
codegen -config cfg ssdObj_detect -args inputArgs -report

Code generation successful: View report
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Run Generated MEX

To test the generated MEX, the example uses a small vehicle data set that contains 295 images. Many
of these images come from the Caltech Cars 1999 and 2001 data sets, available at the Caltech
Research Data Respository website, created by Pietro Perona and used with permission.

Load the vehicle data set and randomly select 10 images to test the generated code.

unzip vehicleDatasetImages.zip
imageNames = dir(fullfile(pwd,'vehicleImages','*.jpg'));
imageNames = {imageNames.name}';
rng(0);
imageIndices = randi(length(imageNames),1,10);

Read the video input frame-by-frame and detect the vehicles in the video using the detector.

for idx = 1:10
    testImage = imread(fullfile(pwd,'vehicleImages',imageNames{imageIndices(idx)}));
    resizedImage = imresize(testImage,[300,300]);
    detectorOutput = ssdObj_detect_mex(resizedImage,ssdNetFile);
    imshow(detectorOutput);
    pause(0.5)
end
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Related Examples
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More About
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Code Generation for a Deep Learning Simulink Model to
Classify ECG Signals

This example demonstrates how you can use powerful signal processing techniques and
Convolutional Neural Networks together to classify ECG signals. We will also showcase how CUDA®
code can be generated from the Simulink® model. This example uses the pretrained CNN network
from the Classify Time Series Using Wavelet Analysis and Deep Learning example of the Wavelet
Toolbox™ to classify ECG signals based on images from the CWT of the time series data. For
information on training, see “Classify Time Series Using Wavelet Analysis and Deep Learning”
(Wavelet Toolbox).

For a video demonstration on how to perform software-in-the-loop (SIL), processor-in-the-loop (PIL)
simulation, and deploying this example to NVIDIA Jetson® board, see https://www.mathworks.com/
videos/deep-learning-in-simulink-for-nvidia-gpus-classification-of-ecg-signals-1621401016961.html.

This example illustrates the following concepts:

• Model the classification application in Simulink. Use MATLAB Function blocks to perform
preprocessing and wavelet transforms of the ECG data. Use the Image Classifier block from
the Deep Learning Toolbox™ for loading the pretrained network and performing the classification
of the ECG data.

• Configure the model for code generation.
• Generate a CUDA executable for the Simulink model.

Third-Party Prerequisites

• CUDA enabled NVIDIA GPU.
• NVIDIA CUDA toolkit and driver.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

ECG Data Description

This example uses ECG data from PhysioNet database. It contains data from three groups of people:

1 Persons with cardiac arrhythmia (ARR)
2 Persons with congestive heart failure (CHF)
3 Persons with normal sinus rhythms (NSR)
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It includes 96 recordings from persons with ARR, 30 recordings from persons with CHF, and 36
recordings from persons with NSR. The ecg_signals MAT-file contains the test ECG data in time
series format. The image classifier in this example distinguishes between ARR, CHF, and NSR.

Algorithmic Workflow

The block diagram for the algorithmic workflow of the Simulink model is shown.

ECG Deep Learning Simulink Model

The Simulink model for classifying the ECG signals is shown. When the model runs, the Video
Viewer block displays the classified ECG signal.

open_system('ecg_dl_cwt');
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ECG Preprocessing Subsystem

The ECG Preprocessing subsystem contains a MATLAB Function block that performs CWT to
obtain scalogram of the ECG signal and then processes the scalogram to obtain an image and an
Image Classifier block that loads the pretrained network from trainedNet.mat and performs
prediction for image classification based on SqueezeNet deep learning CNN.

open_system('ecg_dl_cwt/ECG Preprocessing');

The ScalogramFromECG function block defines a function called ecg_to_scalogram that:

• Uses 65536 samples of double-precision ECG data as input.
• Create time frequency representation from the ECG data by applying Wavelet transform.
• Obtain scalogram from the wavelet coefficients.
• Convert the scalogram to image of size (227x227x3).

The function signature of ecg_to_scalogram is shown.

type ecg_to_scalogram

function ecg_image  = ecg_to_scalogram(ecg_signal)

% Copyright 2020 The MathWorks, Inc.

persistent jetdata;
if(isempty(jetdata))
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    jetdata = ecgColorMap(128,'single');
end
% Obtain wavelet coefficients from ECG signal
cfs = cwt_ecg(ecg_signal);  
% Obtain scalogram from wavelet coefficients
image = ind2rgb(im2uint8(rescale(cfs)),jetdata);
ecg_image = im2uint8(imresize(image,[227,227]));

end

ECG Postprocessing

The ECG Postprocessing MATLAB function block defines the label_prob_image function that
finds the label for the scalogram image based on the highest score from the scores outputed by the
image classifier. It outputs the scalogram image with the label and confidence printed on it.

type label_prob_image

function final_image = label_prob_image(ecg_image, scores, labels)

% Copyright 2020-2021 The MathWorks, Inc.

scores = double(scores);
% Obtain maximum confidence 
[prob,index] = max(scores);
confidence = prob*100;
% Obtain label corresponding to maximum confidence
label = erase(char(labels(index)),'_label');
text = cell(2,1);
text{1} = ['Classification: ' label];
text{2} = ['Confidence: ' sprintf('%0.2f',confidence) '%'];
position = [135 20 0 0; 130 40 0 0];
final_image = insertObjectAnnotation(ecg_image,'rectangle',position,...
    text,'TextBoxOpacity',0.9,'FontSize',9);

end

Run the Simulation

Open Configuration Parameters dialog box.

In Simulation Target pane, select GPU acceleration. In the Deep Learning group, select the
target library as cuDNN.
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To verify the algorithm and display the labels and confidence score of the test ECG signal loaded in
the workspace, run the simulation.

set_param('ecg_dl_cwt', 'SimulationMode', 'Normal');
sim('ecg_dl_cwt');
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Generate and Build the Simulink Model

In Code Generation pane, select the Language as C++ and enable Generate GPU code.

Open Code Generation > GPU Code pane. In the subcategory Libraries, enable cuBLAS,
cuSOLVER and cuFFT.

Generate and build the Simulink model on the host GPU by using the slbuild command. The code
generator places the files in a build folder, a subfolder named ecg_dl_cwt_ert_rtw under your
current working folder.

status = evalc("slbuild('ecg_dl_cwt')");

Generated CUDA® Code

The subfolder named ecg_dl_cwt_ert_rtw contains the generated C++ codes corresponding to
the different blocks in the Simulink model and the specific operations being performed in those
blocks. For example, the file trainedNet0_ecg_dl_cwt0.h contains the C++ class which contains
certain attributes such as numLayers and member functions such as getBatchSize(), predict().
This class represents the pretrained SqueezeNet which has been loaded in the Simulink model.
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Cleanup

Close the Simulink model.

close_system('ecg_dl_cwt/ECG Preprocessing');
close_system('ecg_dl_cwt');
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Code Generation for Lidar Point Cloud Segmentation Network

This example shows how to generate CUDA® MEX code for a deep learning network for lidar
semantic segmentation. This example uses a pretrained SqueezeSegV2 [1] network that can segment
organized lidar point clouds belonging to three classes (background, car, and truck). For information
on the training procedure for the network, see “Lidar Point Cloud Semantic Segmentation Using
SqueezeSegV2 Deep Learning Network” (Lidar Toolbox). The generated MEX code takes a point
cloud as input and performs prediction on the point cloud by using the DAGNetwork object for the
SqueezeSegV2 network.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• NVIDIA TensorRT library.
• Environment variables for the compilers and libraries. For details, see “Third-Party Hardware”

and “Setting Up the Prerequisite Products”.

Verify GPU Environment

To verify that the compilers and libraries for running this example are set up correctly, use the
coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Segmentation Network

SqueezeSegV2 is a convolutional neural network (CNN) designed for the semantic segmentation of
organized lidar point clouds. It is a deep encoder-decoder segmentation network trained on a lidar
data set and imported into MATLAB® for inference. In SqueezeSegV2, the encoder subnetwork
consists of convolution layers that are interspersed with max-pooling layers. This arrangement
successively decreases the resolution of the input image. The decoder subnetwork consists of a series
of transposed convolution layers, which successively increase the resolution of the input image. In
addition, the SqueezeSegV2 network mitigates the impact of missing data by including context
aggregation modules (CAMs). A CAM is a convolutional subnetwork with filterSize of value [7, 7] that
aggregates contextual information from a larger receptive field, which improves the robustness of the
network to missing data. The SqueezeSegV2 network in this example is trained to segment points
belonging to three classes (background, car, and truck).
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For more information on training a semantic segmentation network in MATLAB® by using the
Mathworks lidar dataset, see “Lidar Point Cloud Semantic Segmentation Using PointSeg Deep
Learning Network” (Lidar Toolbox).

Download the pretrained SqueezeSegV2 Network.

net = getSqueezeSegV2Net();

Downloading pretrained SqueezeSegV2 (2 MB)...

The DAG network contains 238 layers, including convolution, ReLU, and batch normalization layers,
and a focal loss output layer. To display an interactive visualization of the deep learning network
architecture, use the analyzeNetwork (Deep Learning Toolbox) function.

analyzeNetwork(net);

squeezesegv2_predict Entry-Point Function

The squeezesegv2_predict.m entry-point function, which is attached to this example, takes a
point cloud as input and performs prediction on it by using the deep learning network saved in the
SqueezeSegV2Net.mat file. The function loads the network object from the
SqueezeSegV2Net.mat file into a persistent variable mynet and reuses the persistent variable in
subsequent prediction calls.

type('squeezesegv2_predict.m');

function out = squeezesegv2_predict(in)
%#codegen

% A persistent object mynet is used to load the DAG network object. At
% the first call to this function, the persistent object is constructed and
% setup. When the function is called subsequent times, the same object is
% reused to call predict on inputs, thus avoiding reconstructing and
% reloading the network object.

% Copyright 2020 The MathWorks, Inc.

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('SqueezeSegV2Net.mat');
end

% pass in input
out = predict(mynet,in);

Generate CUDA MEX Code

To generate CUDA MEX code for the squeezesegv2_predict.m entry-point function, create a GPU
code configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig function to create a CuDNN deep learning configuration object and
assign it to the DeepLearningConfig property of the GPU code configuration object. Run the
codegen command, specifying an input size of [64, 1024, 5]. This value corresponds to the size of the
input layer of the SqueezeSegV2 network.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
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cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
codegen -config cfg squeezesegv2_predict -args {ones(64,1024,5,'uint8')} -report

Code generation successful: View report

To generate CUDA C++ code that takes advantage of NVIDIA TensorRT libraries, in the code, specify
coder.DeepLearningConfig('tensorrt') instead of
coder.DeepLearningConfig('cudnn').

For information on how to generate MEX code for deep learning networks on Intel® processors, see
“Code Generation for Deep Learning Networks with MKL-DNN”.

Prepare Data

Load an organized test point cloud in MATLAB®. Convert the point cloud to a five-channel image for
prediction.

ptCloud = pcread('ousterLidarDrivingData.pcd');
I = pointCloudToImage(ptCloud);

% Examine converted data
whos I

  Name       Size                 Bytes  Class    Attributes

  I         64x1024x5            327680  uint8              

The image has five channels. The (x,y,z) point coordinates comprise the first three channels. The
fourth channel contains the lidar intensity measurement. The fifth channel contains the range
information, which is computed as r = x2 + y2 + z2.

Visualize intensity channel of the image.

intensityChannel = I(:,:,4);    

figure;
imshow(intensityChannel);
title('Intensity Image');

Run Generated MEX on Data

Call squeezesegv2_predict_mex on the five-channel image.

predict_scores = squeezesegv2_predict_mex(I);

The predict_scores variable is a three-dimensional matrix that has three channels corresponding
to the pixel-wise prediction scores for every class. Compute the channel by using the maximum
prediction score to get the pixel-wise labels

[~,argmax] = max(predict_scores,[],3);
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Overlay the segmented labels on the intensity channel image and display the segmented region.
Resize the segmented output and add a colorbar for better visualization.

classes = [
    "background"
    "car"
    "truck"
    ];

cmap = lidarColorMap();
SegmentedImage = labeloverlay(intensityChannel,argmax,'ColorMap',cmap);
SegmentedImage = imresize(SegmentedImage, 'Scale', [2 1], 'method', 'nearest');
figure;
imshow(SegmentedImage);

N = numel(classes);
ticks = 1/(N*2):1/N:1;
colorbar('TickLabels',cellstr(classes),'Ticks',ticks,'TickLength',0,'TickLabelInterpreter','none');
colormap(cmap)
title('Semantic Segmentation Result');

Run Generated MEX Code on Point Cloud Sequence

Read an input point cloud sequence. The sequence contains 10 organized pointCloud frames
collected using an Ouster OS1 lidar sensor. The input data has a height of 64 and a width of 1024, so
each pointCloud object is of size 64-by-1024.

dataFile = 'highwaySceneData.mat';

% Load data in workspace.
load(dataFile);

Setup different colors to visualize point-wise labels for different classes of interest.

% Apply the color red to cars.
carClassCar = zeros(64, 1024, 3, 'uint8');
carClassCar(:,:,1) = 255*ones(64, 1024, 'uint8');

% Apply the color blue to trucks.
truckClassColor = zeros(64, 1024, 3, 'uint8');
truckClassColor(:,:,3) = 255*ones(64, 1024, 'uint8');

% Apply the color gray to background.
backgroundClassColor = 153*ones(64, 1024, 3, 'uint8');

Set the pcplayer function properties to display the sequence and the output predictions. Read the
input sequence frame by frame and detect classes of interest using the model.
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xlimits = [0 120.0];
ylimits = [-80.7 80.7];
zlimits = [-8.4 27];

player = pcplayer(xlimits, ylimits, zlimits);
set(get(player.Axes,'parent'), 'units','normalized','outerposition',[0 0 1 1]);
zoom(get(player.Axes,'parent'),2);
set(player.Axes,'XColor','none','YColor','none','ZColor','none');

for i = 1 : numel(inputData)
    ptCloud = inputData{i};
    
    % Convert point cloud to five-channel image for prediction.
    I = pointCloudToImage(ptCloud);
    
    % Call squeezesegv2_predict_mex on the 5-channel image.
    predict_scores = squeezesegv2_predict_mex(I);
    
    % Convert the numeric output values to categorical labels.
    [~,predictedOutput] = max(predict_scores,[],3);
    predictedOutput = categorical(predictedOutput, 1:3, classes);
    
    % Extract the indices from labels.
    carIndices = predictedOutput == 'car';
    truckIndices = predictedOutput == 'truck';
    backgroundIndices = predictedOutput == 'background';
    
    % Extract a point cloud for each class.
    carPointCloud = select(ptCloud, carIndices, 'OutputSize','full');
    truckPointCloud = select(ptCloud, truckIndices, 'OutputSize','full');
    backgroundPointCloud = select(ptCloud, backgroundIndices, 'OutputSize','full');
    
    % Fill the colors to different classes.
    carPointCloud.Color = carClassCar;
    truckPointCloud.Color = truckClassColor;
    backgroundPointCloud.Color = backgroundClassColor;
    
    % Merge and add all the processed point clouds with class information.
    coloredCloud = pcmerge(carPointCloud, truckPointCloud, 0.01);
    coloredCloud = pcmerge(coloredCloud, backgroundPointCloud, 0.01);
    
    % View the output.
    view(player, coloredCloud);
    drawnow;
end
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Helper Functions

The helper functions used in this example follow.

type pointCloudToImage.m

function image = pointCloudToImage(ptcloud)
%pointCloudToImage Converts organized 3-D point cloud to 5-channel 
%   2-D image.

image = ptcloud.Location;
image(:,:,4) = ptcloud.Intensity;
rangeData = iComputeRangeData(image(:,:,1),image(:,:,2),image(:,:,3));
image(:,:,5) = rangeData;

% Cast to uint8.
image = uint8(image);
end

%--------------------------------------------------------------------------
function rangeData = iComputeRangeData(xChannel,yChannel,zChannel)
rangeData = sqrt(xChannel.*xChannel+yChannel.*yChannel+zChannel.*zChannel);
end

type lidarColorMap.m

function cmap = lidarColorMap()

cmap = [
   0.00  0.00   0.00  % background
   0.98  0.00   0.00  % car
   0.00  0.00   0.98  % truck
   ];
end
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Code Generation for a Video Classification Network

This example shows how to generate CUDA® code for a deep learning network that classifies video
and deploy the generated code onto the NVIDIA® Jetson® Xavier board by using the MATLAB®
Coder™ Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms. The deep learning
network has both convolutional and bidirectional long short-term memory (BiLSTM) layers. The
generated application reads the data from a specified video file as a sequence of video frames and
outputs a label that classifies the activity in the video. This example generates code for the network
trained in the Classify Videos Using Deep Learning example from the Deep Learning Toolbox™. For
more information, see “Classify Videos Using Deep Learning” (Deep Learning Toolbox).

Third-Party Prerequisites

Target Board Requirements

• NVIDIA Jetson board.
• Ethernet crossover cable to connect the target board and host PC (if the target board cannot be

connected to a local network).
• Supported Jetpack SDK that includes CUDA and cuDNN libraries
• Environment variables on the target for the compilers and libraries. For information on the

supported versions of the compilers and libraries and their setup, see “Install and Setup
Prerequisites for NVIDIA Boards” (MATLAB Coder Support Package for NVIDIA Jetson and
NVIDIA DRIVE Platforms) for NVIDIA boards.

Verify NVIDIA Support Package Installation on Host

To generate and deploy code to an NVIDIA Jetson Xavier board, you will need the MATLAB Coder
Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms. Use the
checkHardwareSupportPackageInstall function to verify that the host system is compatible to
run this example. If the function does not throw an error, the support package is correctly installed.

checkHardwareSupportPackageInstall();

Connect to the NVIDIA Hardware

The support package uses an SSH connection over TCP/IP to execute commands while building and
running the generated CUDA code on the Jetson platform. You must therefore connect the target
platform to the same network as the host computer or use an Ethernet crossover cable to connect the
board directly to the host computer. Refer to the NVIDIA documentation on how to set up and
configure your board.

To communicate with the NVIDIA hardware, you must create a live hardware connection object by
using the jetson (MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms)
function. You must know the host name or IP address, username, and password of the target board to
create a live hardware connection object. For example, when connecting to the target board for the
first time, create a live object for Jetson hardware by using the command:

hwobj = jetson('jetson-name','ubuntu','ubuntu');

The jetson object reuses these settings from the most recent successful connection to the Jetson
hardware. This example establishes an SSH connection to the Jetson hardware using the settings
stored in memory.
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hwobj = jetson;

Checking for CUDA availability on the Target...
Checking for 'nvcc' in the target system path...
Checking for cuDNN library availability on the Target...
Checking for TensorRT library availability on the Target...
Checking for prerequisite libraries is complete.
Gathering hardware details...
Checking for third-party library availability on the Target...
Gathering hardware details is complete.
 Board name         : NVIDIA Jetson TX2
 CUDA Version       : 10.0
 cuDNN Version      : 7.6
 TensorRT Version   : 6.0
 GStreamer Version  : 1.14.5
 V4L2 Version       : 1.14.2-1
 SDL Version        : 1.2
 OpenCV Version     : 4.1.1
 Available Webcams  : MicrosoftÂ® LifeCam Cinema(TM)
 Available GPUs     : NVIDIA Tegra X2

NOTE:

In case of a connection failure, a diagnostics error message is reported on the MATLAB command
line. If the connection has failed, the most likely cause is incorrect IP address or hostname.

Verify GPU Environment

Use the coder.checkGpuInstall function to verify that the compilers and libraries necessary for
running this example are set up correctly.

envCfg = coder.gpuEnvConfig('jetson');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
envCfg.HardwareObject = hwobj;
coder.checkGpuInstall(envCfg);

The net_classify Entry-Point Function

The net_classify entry-point function hardcodes the name of a video file. Note that this hardcoded
path must be adjusted to the location of the video file on your target hardware. The entry-point
function then reads the data from the file using a VideoReader object. The data is read into
MATLAB as a sequence of images (video frames). This data is then center-cropped, and finally passed
as input to a trained network for prediction. Specifically, the function uses the network trained in the
Classify Videos Using Deep Learning example. The function loads the network object from the
net.mat file into a persistent variable and reuses the persistent object for subsequent prediction
calls.

type('net_classify.m')

function out = net_classify() %#codegen

if coder.target('MATLAB')
    videoFilename = 'situp.mp4';
else
    videoFilename = '/home/ubuntu/VideoClassify/situp.mp4';
end
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frameSize = [1920 1080];

% read video
video = readVideo(videoFilename, frameSize);

% specify network input size
inputSize = [224 224 3];

% crop video
croppedVideo = centerCrop(video,inputSize);

% A persistent object mynet is used to load the series network object. At
% the first call to this function, the persistent object is constructed and
% setup. When the function is called subsequent times, the same object is
% reused to call predict on inputs, thus avoiding reconstructing and
% reloading the network object.

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('net.mat');
end

% pass in cropped input to network
out = classify(mynet, croppedVideo); 

%   Copyright 2019-2021 The MathWorks, Inc.

About the Network

The network used to classify video input has a few notable features:

1. The network has a sequence input layer to accept images sequences as input.

2. The network uses a sequence folding layer followed by convolutional layers to apply the
convolutional operations to each video frame independently, thereby extracting features from each
frame.

3. The network uses a sequence unfolding layer and a flatten layer to restore the sequence structure
and reshape the output to vector sequences, in anticipation of the BiLSTM layer.

4. Finally, the network uses the BiLSTM layer followed by output layers to classify the vector
sequences.

To display an interactive visualization of the network architecture and information about the network
layers, use the analyzeNetwork (Deep Learning Toolbox) function.

Run net_classify in MATLAB

Download the video classification network.

getVideoClassificationNetwork();

Loop over the individual frames of situp.mp4 to view the test video in MATLAB.

videoFileName = 'situp.mp4';
video = readVideo(videoFileName);
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numFrames = size(video,4);
figure
for i = 1:numFrames
    frame = video(:,:,:,i);
    imshow(frame/255);
    drawnow
end

Run net_classify and note the output label. Note that if there is a host GPU available, it will be
automatically used when running net_classify.

net_classify()

ans = categorical
     situp 

Generate & Deploy CUDA Code on the Target

To generate a CUDA executable that can be deployed to an NVIDIA target, create a new GPU coder
configuration object for generating an executable. Set the target deep learning library to 'cudnn'.

clear cfg
cfg = coder.gpuConfig('exe');
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');

Use the coder.hardware function to create a configuration object for the Jetson platform and assign
it to the Hardware property of the GPU code configuration object cfg.

cfg.Hardware = coder.hardware('NVIDIA Jetson');
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Set the build directory on the target hardware. Change the example path below to the location on
your target hardware where you would like the generated code to be placed.

cfg.Hardware.BuildDir = '/home/ubuntu/VideoClassify';

The custom main file main.cu is a wrapper that calls the net_classify function in the generated
library.

cfg.CustomInclude = '.';
cfg.CustomSource = fullfile('main.cu');

Run the codegen command. This time, code will be generated and then copied over to the target
board. The executable will then be built on the target board.

codegen -config cfg net_classify

Code generation successful.

Run the Generated Application on the Target

Copy the test video file situp.mp4 from the host computer to the target device by using the
putFile command. Ensure that this video file is placed in the location hardcoded in the entry-point
function net_classify. In this example, this location happens to be the target hardware build
directory.

putFile(hwobj,videoFileName,cfg.Hardware.BuildDir);

Use runApplication to launch the application on the target hardware. The label will be displayed
in the output terminal on the target.

status = evalc("runApplication(hwobj,'net_classify')");

See Also
Functions
coder.checkGpuInstall | codegen | coder.DeepLearningConfig |
coder.loadDeepLearningNetwork | jetson | runApplication | killApplication |
VideoReader

Objects
coder.gpuConfig | coder.gpuEnvConfig | coder.CuDNNConfig | coder.TensorRTConfig |
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Related Examples
• “Classify Videos Using Deep Learning” (Deep Learning Toolbox)
• “Getting Started with the MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA

DRIVE Platforms” (MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE
Platforms)

More About
• “Long Short-Term Memory Networks” (Deep Learning Toolbox)
• “Build and Run an Executable on NVIDIA Hardware” (MATLAB Coder Support Package for

NVIDIA Jetson and NVIDIA DRIVE Platforms)
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• “Stop or Restart an Executable Running on NVIDIA Hardware” (MATLAB Coder Support
Package for NVIDIA Jetson and NVIDIA DRIVE Platforms)

• “Run Linux Commands on NVIDIA Hardware” (MATLAB Coder Support Package for NVIDIA
Jetson and NVIDIA DRIVE Platforms)
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Code Generation For Object Detection Using YOLO v3 Deep
Learning

This example shows how to generate CUDA® MEX for a you only look once (YOLO) v3 object
detector. YOLO v3 improves upon YOLO v2 by adding detection at multiple scales to help detect
smaller objects. Moreover, the loss function used for training is separated into mean squared error
for bounding box regression and binary cross-entropy for object classification to help improve
detection accuracy. The YOLO v3 network used in this example was trained from the Object Detection
Using YOLO v3 Deep Learning example in the Computer Vision Toolbox (TM). For more information,
see “Object Detection Using YOLO v3 Deep Learning” (Computer Vision Toolbox).

Third-Party Prerequisites

Required

• CUDA enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA CUDA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

To verify that the compilers and libraries for running this example are set up correctly, use the
coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

YOLO v3 Network

The YOLO v3 network in this example is based on squeezenet (Deep Learning Toolbox), and uses
the feature extraction network in SqueezeNet with the addition of two detection heads at the end.
The second detection head is twice the size of the first detection head, so it is better able to detect
small objects. Note that any number of detection heads of different sizes can be specified based on
the size of the objects to be detected. The YOLO v3 network uses anchor boxes estimated using
training data to have better initial priors corresponding to the type of data set and to help the
network learn to predict the boxes accurately. For information about anchor boxes, see “Anchor Boxes
for Object Detection” (Computer Vision Toolbox).

The YOLO v3 network in this example is illustrated in the following diagram.
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Each detection head predicts the bounding box coordinates (x, y, width, height), object confidence,
and class probabilities for the respective anchor box masks. Therefore, for each detection head, the
number of output filters in the last convolution layer is the number of anchor box mask times the
number of prediction elements per anchor box. The detection heads comprise the output layer of the
network.

Pretrained YOLO v3 Network

This example uses the yolov3SqueezeNetVehicleExample_21aSPKG.zip file containing the
pretrained YOLO v3 network. The file is approximately 23 MB in size. Download the file from the
MathWorks website, then unzip the file.

fileName = matlab.internal.examples.downloadSupportFile('vision/data/','yolov3SqueezeNetVehicleExample_21aSPKG.zip');
data = unzip(fileName);
matFile = data{1,1};
vehicleDetector = load(matFile);
net = vehicleDetector.detector.Network

net = 
  dlnetwork with properties:

         Layers: [75×1 nnet.cnn.layer.Layer]
    Connections: [84×2 table]
     Learnables: [66×3 table]
          State: [6×3 table]
     InputNames: {'data'}
    OutputNames: {'customOutputConv1'  'customOutputConv2'}
    Initialized: 1

Note: You can also use the pretrained detector network availabe through the Computer Vision
Toolbox™ Model for YOLO v3 Object Detection support package.

To use this pretrained network, you must first install the Computer Vision Toolbox Model for YOLO v3
Object Detection from the Add-On Explorer. For more information about installing add-ons, see “Get
and Manage Add-Ons”.

Then, save the yolov3ObjectDetector object to a MAT-file and proceed. For example,

detector = yolov3ObjectDetector('darknet53-coco');
matFile = 'pretrainedYOLOv3Detector.mat';
save(matFile,'detector');
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The yolov3Detect Entry-Point Function

The yolov3Detect entry-point function takes an image input and runs the detector on the image
using the deep learning network saved in the yolov3SqueezeNetVehicleExample_21aSPKG.mat
file. The function loads the network object from the
yolov3SqueezeNetVehicleExample_21aSPKG.mat file into a persistent variable yolov3Obj and
reuses the persistent object on subsequent detection calls.

type('yolov3Detect.m')

function outImg = yolov3Detect(in,matFile)

%   Copyright 2021 The MathWorks, Inc.

persistent yolov3Obj;

if isempty(yolov3Obj)
    yolov3Obj = coder.loadDeepLearningNetwork(matFile);
end

% Call to detect method
[bboxes,~,labels] = yolov3Obj.detect(in,'Threshold',0.5);

% Convert categorical labels to cell array of charactor vectors
labels = cellstr(labels);

% Annotate detections in the image.
outImg = insertObjectAnnotation(in,'rectangle',bboxes,labels);

Generate CUDA MEX

To generate CUDA code for the entry-point function, create a GPU code configuration object for a
MEX target and set the target language to C++. Use the coder.DeepLearningConfig function to
create a CuDNN deep learning configuration object and assign it to the DeepLearningConfig
property of the GPU code configuration object. Run the codegen command specifying an input size of
227-by-227-by-3. This value corresponds to the input layer size of YOLOv3.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
cfg.GenerateReport = true;
inputArgs = {ones(227,227,3,'uint8'),coder.Constant(matFile)};

codegen -config cfg yolov3Detect -args inputArgs -report

Code generation successful: View report

To generate CUDA® code for TensorRT target create and use a TensorRT deep learning configuration
object instead of the CuDNN configuration object. Similarly, to generate code for MKLDNN target,
create a CPU code configuration object and use MKLDNN deep learning configuration object as its
DeepLearningConfig property.

Run the Generated MEX

Set up the video file reader and read the input video. Create a video player to display the video and
the output detections.
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videoFile = 'highway_lanechange.mp4';
videoFreader = vision.VideoFileReader(videoFile,'VideoOutputDataType','uint8');
depVideoPlayer = vision.DeployableVideoPlayer('Size','Custom','CustomSize',[640 480]);

Read the video input frame-by-frame and detect the vehicles in the video using the detector.

cont = ~isDone(videoFreader);
while cont
    I = step(videoFreader);
    in = imresize(I,[227,227]);
    out = yolov3Detect_mex(in,matFile);
    step(depVideoPlayer, out);
    % Exit the loop if the video player figure window is closed
    cont = ~isDone(videoFreader) && isOpen(depVideoPlayer); 
end

References
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Generate Digit Images on NVIDIA GPU Using Variational
Autoencoder

This example shows how to generate CUDA® MEX for a trained variational autoencoder (VAE)
network. The example illustrates:

• Generation of hand-drawn digit images in the style of the MNIST data set.
• CUDA code generation for a dlnetwork (Deep Learning Toolbox) object representing a deep

learning network.
• Use of dlarray (Deep Learning Toolbox) objects in code generation.

This example uses a pretrained decoder network based on the Train Variational Autoencoder (VAE) to
Generate Images example from the Deep Learning Toolbox™. For more information, see “Train
Variational Autoencoder (VAE) to Generate Images” (Deep Learning Toolbox).

Third-Party Prerequisites

Required

• CUDA enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA CUDA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

To verify that the compilers and libraries for running this example are set up correctly, use the
coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Pretrained Variational Autoencoder Network

Autoencoders have two parts: the encoder and the decoder. The encoder takes an image input and
outputs a compressed representation (the encoding), which is a vector of size latent_dim, equal to
20 in this example. The decoder takes the compressed representation, decodes it, and recreates the
original image.

VAEs differ from regular autoencoders in that they do not use the encoding-decoding process to
reconstruct an input. Instead, they impose a probability distribution on the latent space, and learn the
distribution so that the distribution of outputs from the decoder matches that of the observed data.
Then, they sample from this distribution to generate new data.

4 Deep Learning

4-222



This example uses the decoder network trained in the Train Variational Autoencoder (VAE) to
Generate Images example. To train the network yourself, see “Train Variational Autoencoder (VAE) to
Generate Images” (Deep Learning Toolbox).
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The generateVAE Entry-Point Function

The generateVAE entry-point function loads the dlnetwork object from the
trainedDecoderVAENet MAT-file into a persistent variable and reuses the persistent object for
subsequent prediction calls. It initializes a dlarray object containing 25 randomly generated
encodings, passes them through the decoder network, and extracts the numeric data of the generated
image from the deep learning array object.

type('generateVAE.m')

function generatedImage =  generateVAE(decoderNetFileName,latentDim,Environment) %#codegen
% Copyright 2020-2021 The MathWorks, Inc.

persistent decoderNet;
if isempty(decoderNet)
    decoderNet = coder.loadDeepLearningNetwork(decoderNetFileName);
end

% Generate random noise
randomNoise = dlarray(randn(1,1,latentDim,25,'single'),'SSCB');

if coder.target('MATLAB') && strcmp(Environment,'gpu')
    randomNoise = gpuArray(randomNoise);
end

% Generate new image from noise
generatedImage = sigmoid(predict(decoderNet,randomNoise));

% Extract numeric data from dlarray
generatedImage = extractdata(generatedImage);

end

Evaluate the Entry-Point Function 

Evaluate the generateVAE entry-point function to generate digit images and plot the results.

latentDim = 20;
matfile = 'trainedDecoderVAENet.mat';
Env = '';

figure()
title("Generated samples of digits - MATLAB")

generatedImageML = generateVAE(matfile, latentDim, Env);
imshow(imtile(generatedImageML, "ThumbnailSize", [100,100]))
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Generate CUDA MEX

To generate CUDA code for the generateVAE entry-point function, create a GPU code configuration
object for a MEX target and set the target language to C++. Use the coder.DeepLearningConfig
function to create a CuDNN deep learning configuration object and assign it to the
DeepLearningConfig property of the GPU code configuration object.

Env = 'gpu';
cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');

args = {coder.Constant(matfile), coder.Constant(latentDim), coder.Constant(Env)};

codegen -config cfg -args args generateVAE -report
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Code generation successful: View report

To generate CUDA code for TensorRT target, create and use a TensorRT deep learning configuration
object instead of the CuDNN configuration object.

Run the Generated MEX

Call the generated CUDA MEX and display the results.

figure()
title("Generated samples of digits - GPU")

generatedImageGPU = generateVAE_mex(matfile, latentDim, Env);
imshow(imtile(generatedImageGPU, "ThumbnailSize", [100,100]))
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The generateVAE entry-point function initializes the dlarray object with randomly generated
encodings, passes them through the decoder network, and extracts the numeric data of the generated
image from the deep learning array object. As a result, the image geenrated during MATLAB
simulation is different from the image generated by the MEX function call.

See Also
Functions
coder.checkGpuInstall | codegen | coder.DeepLearningConfig |
coder.loadDeepLearningNetwork

Objects
coder.gpuConfig | coder.gpuEnvConfig | coder.CuDNNConfig | coder.TensorRTConfig |
dlarray | dlnetwork

Related Examples
• “Train Variational Autoencoder (VAE) to Generate Images” (Deep Learning Toolbox)

More About
• “Code Generation for dlarray” on page 4-52
• “dlarray Limitations for Code Generation” on page 4-62
• “Define Custom Training Loops, Loss Functions, and Networks” (Deep Learning Toolbox)
• “Train Network Using Custom Training Loop” (Deep Learning Toolbox)
• “Make Predictions Using dlnetwork Object” (Deep Learning Toolbox)

4 Deep Learning

4-228



Quantize Residual Network Trained for Image Classification
and Generate CUDA Code

This example shows how to quantize the learnable parameters in the convolution layers of a deep
learning neural network that has residual connections and has been trained for image classification
with CIFAR-10 data.

Neural networks use memory to store input data, parameters (weights), and activations from each
layer as the input propagates through the network. Most neural networks that you create and train
using Deep Learning Toolbox™ use single-precision floating point data types. Even small networks
require a considerable amount of memory and hardware to perform these floating-point arithmetic
operations. These restrictions can inhibit deployment of deep learning models to devices that have
low computational power and less memory resources. By using a lower precision to store the weights
and activations, you can reduce the memory requirements of the network.

In this example, you use the Deep Learning Toolbox in tandem with the Deep Learning Toolbox Model
Quantization Library support package to reduce the memory footprint of a deep neural network by
quantizing the weights, biases, and activations of convolution layers to 8-bit scaled integer data
types.

The network in this example has been trained for image classification with CIFAR-10 data.

Residual connections are a popular element in convolutional neural network architectures. A residual
network is a type of DAG network that has residual (or shortcut) connections that bypass the main
network layers. Residual connections enable the parameter gradients to propagate more easily from
the output layer to the earlier layers of the network, which makes it possible to train deeper
networks. This increased network depth can result in higher accuracies on more difficult tasks. For
information on the network architecture and training, see “Train Residual Network for Image
Classification” (Deep Learning Toolbox).

To run this example, you must have the products required to quantize and deploy a deep learning
network to a GPU environment. For information on these products, see “Quantization Workflow
Prerequisites” (Deep Learning Toolbox).

Load Pretrained Network

Load the pretrained network. For information on creating and training a network with residual
connections for image classification yourself, see the Train Residual Network for Image Classification
example.

load('CIFARNet-20-16.mat','trainedNet');
net = trainedNet;

You can use analyzeNetwork to analyze the deep learning network architecture.

analyzeNetwork(net)
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Load Data

Download the CIFAR-10 data set [1] by executing the code below. The data set contains 60,000
images. Each image is 32-by-32 in size and has three color channels (RGB). The size of the data set is
175 MB. Depending on your internet connection, the download process can take some time.

datadir = tempdir;
downloadCIFARData(datadir);

Downloading CIFAR-10 dataset (175 MB). This can take a while...done.

Prepare Data for Calibration and Validation

Load the CIFAR-10 training and test images as 4-D arrays. The training set contains 50,000 images
and the test set contains 10,000 images. Use the CIFAR-10 test images for network validation.

[XTrain,YTrain,XValidation,YValidation] = loadCIFARData(datadir);

You can display a random sample of the training images using the following code.

figure;
idx = randperm(size(XTrain,4),20);
im = imtile(XTrain(:,:,:,idx),'ThumbnailSize',[96,96]);
imshow(im)
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Create an augmentedImageDatastore object to use for calibration and validation. Use 200 random
images for calibration and 50 random images for validation.

inputSize = net.Layers(1).InputSize;

augimdsTrain = augmentedImageDatastore(inputSize,XTrain,YTrain);
augimdsCalibration = shuffle(augimdsTrain).subset(1:200);

augimdsValidation = augmentedImageDatastore(inputSize,XValidation,YValidation);
augimdsValidation = shuffle(augimdsValidation).subset(1:50);

Quantize the Network for GPU Deployment Using the Deep Network Quantizer App

This example uses a GPU execution environment. To learn about the products required to quantize
and deploy the deep learning network to a GPU environment, see “Quantization Workflow
Prerequisites” (Deep Learning Toolbox).

In the MATLAB® Command Window, open the Deep Network Quantizer app.

deepNetworkQuantizer

Select New > Quantize a network. The app automatically verifies your execution environment.

In the dialog, select the execution environment and the network to quantize from the base
workspace. For this example, select a GPU execution environment and the DAG network net.

In the Calibrate section of the toolstrip, under Calibration Data, select the
augmentedImageDatastore object from the base workspace containing the calibration data
augimdsCalibration.

Click Calibrate.

Deep Network Quantizer uses the calibration data to exercise the network and collect range
information for the learnable parameters in the network layers.

When the calibration is complete, the app displays a table containing the weights and biases in the
convolution, as well as fully connected layers of the network and the dynamic ranges of the
activations in all layers of the network with their minimum and maximum values during the
calibration. To the right of the table, the app displays histograms of the dynamic ranges of the
parameters. The gray regions of the histograms indicate data that cannot be represented by the
quantized representation. For more information on how to interpret these histograms, see
“Quantization of Deep Neural Networks” (Deep Learning Toolbox).
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In the Quantize Layer column of the table, indicate whether to quantize the learnable parameters in
the layer. Layers that are not convolution layers cannot be quantized, and therefore cannot be
selected. Layers that are not quantized remain in single precision after quantization.

In the Validate section of the toolstrip, under Validation Data, select the
augmentedImageDatastore object from the base workspace containing the validation data,
augimdsValidation.

In the Validate section of the toolstrip, under Quantization Options, select the metric function to
use for validation. The app determines a default metric function to use for validation based on the
type of network that you quantize. You can also add additional custom metric functions to use for
validation. For this example, enter the name of the custom metric function hComputeAccuracy.
Select Add to add hComputeAccuracy to the list of metric functions available in the app. Select
hComputeAccuracy as the metric function to use for validation. This custom metric function
compares the predicted label to the ground truth and returns the top-1 accuracy. The custom metric
function must be on the path.
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Click Quantize and Validate.

The app quantizes the network and displays a summary of the validation results. For this set of
calibration and validation images, quantization of the network results in a 2% decrease in accuracy
with a 73% reduction in learnable parameter memory for the set of 50 validation images.
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After quantizing and validating the network, you can export the network or generate code. To export
the network, select Export > Export Quantizer to create a dlquantizer object in the base
workspace. To open the GPU Coder app and generate GPU code from the optimized neural network,
select Export > Generate Code. To learn how to generate CUDA code for an optimized deep
convolutional neural network using GPU Coder, see “Generate INT8 Code for Deep Learning
Networks” on page 4-107.

Validate the Performance of the Network Using Multiple Metric Functions

You can use multiple metric functions to evaluate the performance of the network simultaneously by
using the dlquantizer function.

To begin, load the pretrained network and data, and prepare the data for calibration and validation,
as described above.

Create a dlquantizer object. Specify the network to quantize and the execution environment to
use. Use the calibrate function to exercise the network with sample inputs from
augimdsCalibration and collect range information.

dq = dlquantizer(net,'ExecutionEnvironment','GPU');
calResults = calibrate(dq,augimdsCalibration)

Specify the metric functions in a dlquantizationOptions object. Use the validate function to
quantize the learnable parameters in the convolution layers of the network and exercise the network.
The validate function uses the metric functions defined in the dlquantizationOptions object to
compare the results of the network before and after quantization. For this example, use the top-1
accuracy and top-5 accuracy metrics are used to evaluate the performance of the network.

dqOpts = dlquantizationOptions('MetricFcn',...
    {@(x)hComputeAccuracy(x,net,augimdsValidation), ...
    @(x)hComputeTop_5(x,net,augimdsValidation)});

validationResults = validate(dq,augimdsValidation,dqOpts)

validationResults = struct with fields:
       NumSamples: 50
    MetricResults: [1×2 struct]
       Statistics: [2×2 table]

Examine the MetricResults.Result field of the validation output to see the performance of the
optimized network as measured by each metric function used.

validationResults.MetricResults.Result
validationResults.Statistics

To visualize the calibration statistics, first save the dlquantizer object dq.

save('dlquantObj.mat','dq')

Then import the dlquantizer object dq in the Deep Network Quantizer app by selecting New >
Import dlquantizer object.

Generate CUDA Code

Generate CUDA® code for a optimized deep convolutional neural network.
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Create Entry-Point Function

Write an entry-point function in MATLAB® that:

1 Uses the coder.loadDeepLearningNetwork function to load a deep learning model and to
construct and set up a CNN class. For more information, see “Load Pretrained Networks for
Code Generation” on page 4-66.

2 Calls predict (Deep Learning Toolbox) to predict the responses.

type('mynet_predict.m');

function out = mynet_predict(netFile, im)
    persistent net; 
    if isempty(net)
        net = coder.loadDeepLearningNetwork(netFile);
    end
    out = net.predict(im);
end

A persistent object mynet loads the DAGNetwork object. The first call to the entry-point function
constructs and sets up the persistent object. Subsequent calls to the function reuse the same object
to call predict on inputs, avoiding reconstructing and reloading the network object.

Code Generation by Using codegen

To configure build settings such as the output file name, location, and type, you create coder
configuration objects. To create the objects, use the coder.gpuConfig function. For example, when
generating CUDA MEX using the codegen command, use cfg = coder.gpuConfig('mex').

To specify code generation parameters for cuDNN, set the DeepLearningConfig property to a
coder.CuDNNConfig object that you create by using coder.DeepLearningConfig.

Specify the location of the MAT file containing the calibration data.

Specify the precision of the inference computations in supported layers by using the DataType
property. For 8-bit integers, use 'int8'. Int8 precision requires a CUDA GPU with compute
capability of 6.1, 6.3, or higher. Use the ComputeCapability property of the GPU code
configuration object to set the appropriate compute capability value.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
cfg.DeepLearningConfig.DataType = 'int8';
cfg.DeepLearningConfig.CalibrationResultFile = 'dlquantObj.mat';
netFile = 'mynet.mat';
save(netFile,'net');

Run the codegen command. The codegen command generates CUDA code from the
mynet_predict.m entry-point function.

codegen -config cfg mynet_predict -args {coder.Constant(netFile), ones(inputSize, 'single')} -report

When code generation is successful, you can view the resulting code generation report by clicking
View Report in the MATLAB Command Window. The report is displayed in the Report Viewer window.
If the code generator detects errors or warnings during code generation, the report describes the
issues and provides links to the problematic MATLAB code. See “Code Generation Reports”.
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More About
• “Quantization of Deep Neural Networks” on page 4-99
• “Generate INT8 Code for Deep Learning Networks” on page 4-107
• “Quantize Layers in Object Detectors and Generate CUDA Code” on page 4-237
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-69
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-78
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Quantize Layers in Object Detectors and Generate CUDA Code

This example was previously named 'Quantize Object Detectors and Generate CUDA Code' but
renamed in R2022a to avoid confusion with quantized network objects created by the quantize
(Deep Learning Toolbox) function. Code generation does not support quantized deep neural networks
produced by the quantize function.

This example shows how to generate CUDA® code for an SSD vehicle detector and a YOLO v2
vehicle detector that performs inference computations in 8-bit integers for the convolutional layers.

Deep learning is a powerful machine learning technique in which you train a network to learn image
features and perform detection tasks. There are several techniques for object detection using deep
learning, such as Faster R-CNN, You Only Look Once (YOLO v2), and SSD. For more information, see
“Object Detection Using YOLO v2 Deep Learning” (Computer Vision Toolbox) and “Object Detection
Using SSD Deep Learning” (Computer Vision Toolbox).

Neural network architectures used for deep learning applications contain many processing layers,
including convolutional layers. Deep learning models typically work on large sets of labeled data.
Performing inference on these models is computationally intensive, consuming significant amounts of
memory. Neural networks use memory to store input data, parameters (weights), and activations from
each layer as the input propagates through the network. Deep neural networks trained in MATLAB
use single-precision floating point data types. Even networks that are small in size require a
considerable amount of memory and hardware to perform these floating-point arithmetic operations.
These restrictions can inhibit deployment of deep learning models to devices that have low
computational power and smaller memory resources. By using a lower precision to store the weights
and activations, you can reduce the memory requirements of the network.

You can use Deep Learning Toolbox in tandem with the Deep Learning Toolbox Model Quantization
Library support package to reduce the memory footprint of a deep neural network by quantizing the
weights, biases, and activations of convolution layers to 8-bit scaled integer data types. Then, you can
use GPU Coder™ to generate CUDA code for the optimized network.

Download Pretrained Network

Download a pretrained object detector to avoid having to wait for training to complete.

detectorType = 

detectorType = 2

switch detectorType
    case 1
        if ~exist('ssdResNet50VehicleExample_20a.mat','file')
            disp('Downloading pretrained detector...');
            pretrainedURL = 'https://www.mathworks.com/supportfiles/vision/data/ssdResNet50VehicleExample_20a.mat';
            websave('ssdResNet50VehicleExample_20a.mat',pretrainedURL);
        end
    case 2
        if ~exist('yolov2ResNet50VehicleExample_19b.mat','file')    
            disp('Downloading pretrained detector...');
            pretrainedURL = 'https://www.mathworks.com/supportfiles/vision/data/yolov2ResNet50VehicleExample_19b.mat';
            websave('yolov2ResNet50VehicleExample_19b.mat',pretrainedURL);
        end
end
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Load Data

This example uses a small vehicle data set that contains 295 images. Many of these images come
from the Caltech Cars 1999 and 2001 data sets, created by Pietro Perona and used with permission.
Each image contains one or two labeled instances of a vehicle. A small data set is useful for exploring
the training procedure, but in practice, more labeled images are needed to train a robust detector.
Extract the vehicle images and load the vehicle ground truth data.

unzip vehicleDatasetImages.zip
data = load('vehicleDatasetGroundTruth.mat');
vehicleDataset = data.vehicleDataset;

Prepare Data for Training, Calibration, and Validation

The training data is stored in a table. The first column contains the path to the image files. The
remaining columns contain the ROI labels for vehicles. Display the first few rows of the data.

vehicleDataset(1:4,:)

Split the data set into training, validation, and test sets. Select 60% of the data for training, 10% for
calibration, and the remainder for validating the trained detector.

rng(0);
shuffledIndices = randperm(height(vehicleDataset));
idx = floor(0.6 * length(shuffledIndices) );

trainingIdx = 1:idx;
trainingDataTbl = vehicleDataset(shuffledIndices(trainingIdx),:);

calibrationIdx = idx+1 : idx + 1 + floor(0.1 * length(shuffledIndices) );
calibrationDataTbl = vehicleDataset(shuffledIndices(calibrationIdx),:);

validationIdx = calibrationIdx(end)+1 : length(shuffledIndices);
validationDataTbl = vehicleDataset(shuffledIndices(validationIdx),:);

Use imageDatastore and boxLabelDatastore to create datastores for loading the image and
label data during training and evaluation.

imdsTrain = imageDatastore(trainingDataTbl{:,'imageFilename'});
bldsTrain = boxLabelDatastore(trainingDataTbl(:,'vehicle'));

imdsCalibration = imageDatastore(calibrationDataTbl{:,'imageFilename'});
bldsCalibration = boxLabelDatastore(calibrationDataTbl(:,'vehicle'));

imdsValidation = imageDatastore(validationDataTbl{:,'imageFilename'});
bldsValidation = boxLabelDatastore(validationDataTbl(:,'vehicle'));

Combine the image and box label datastores.

trainingData = combine(imdsTrain,bldsTrain);
calibrationData = combine(imdsCalibration,bldsCalibration);
validationData = combine(imdsValidation,bldsValidation);

Display one of the training images and box labels.

data = read(calibrationData);
I = data{1};
bbox = data{2};
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annotatedImage = insertShape(I,'Rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

Define Network Parameters

To reduce the computational cost of running the example, specify a network input size that
corresponds to the minimum size required to run the network.

inputSize = []; 
switch detectorType 
    case 1
        inputSize = [300 300 3]; % Minimum size for SSD
    case 2
        inputSize = [224 224 3]; % Minimum size for YOLO v2
end

Define the number of object classes to detect.

numClasses = width(vehicleDataset)-1;

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation, you can add more variety to the training data without
actually having to increase the number of labeled training samples.

Use transformations to augment the training data by:

• Randomly flipping the image and associated box labels horizontally.
• Randomly scaling the image and associated box labels.
• Jitter the image color.

Note that data augmentation is not applied to the test data. Ideally, test data is representative of the
original data and left unmodified for unbiased evaluation.

augmentedCalibrationData = transform(calibrationData,@augmentVehicleData);

Visualize augmented training data by reading the same image multiple times.

augmentedData = cell(4,1);
for k = 1:4
    data = read(augmentedCalibrationData);
    augmentedData{k} = insertShape(data{1},'Rectangle',data{2});
    reset(augmentedCalibrationData);
end

figure
montage(augmentedData,'BorderSize',10)
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Preprocess Calibration Data

Preprocess the augmented calibration data to prepare for calibration of the network.

preprocessedCalibrationData = transform(augmentedCalibrationData,@(data)preprocessVehicleData(data,inputSize));

Read the preprocessed calibration data.

data = read(preprocessedCalibrationData);

Display the image and bounding boxes.

I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'Rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)
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Load and Test Pretrained Detector

Load the pretrained detector.

switch detectorType
    case 1
        % Load pretrained SSD detector for the example.
        pretrained = load('ssdResNet50VehicleExample_20a.mat');
        detector = pretrained.detector;
    case 2 
        % Load pretrained YOLO v2 detector for the example.
        pretrained = load('yolov2ResNet50VehicleExample_19b.mat');
        detector = pretrained.detector;
end

As a quick test, run the detector on one test image.

data = read(calibrationData);
I = data{1,1};
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I = imresize(I,inputSize(1:2));
[bboxes,scores] = detect(detector,I, 'Threshold', 0.4);

Display the results.

I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I)

Validate Floating-Point Network

Evaluate the trained object detector on a large set of images to measure the performance. Computer
Vision Toolbox™ provides functions to measure common object detector metrics, such as average
precision (evaluateDetectionPrecision) and log-average miss rates
(evaluateDetectionMissRate). For this example, use the average precision metric to evaluate
performance. The average precision provides a single number that incorporates the ability of the
detector to make correct classifications (precision) and the ability of the detector to find all
relevant objects (recall).

Apply the same preprocessing transform to the test data as for the training data. Note that data
augmentation is not applied to the test data. Ideally, test data is representative of the original data
and left unmodified for unbiased evaluation.

preprocessedValidationData = transform(validationData,@(data)preprocessVehicleData(data,inputSize));

Run the detector on all the test images.

detectionResults = detect(detector, preprocessedValidationData,'Threshold',0.4);

Evaluate the object detector using average precision metric.

[ap,recall,precision] = evaluateDetectionPrecision(detectionResults,preprocessedValidationData);
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The precision/recall (PR) curve highlights how precise a detector is at varying levels of recall. Ideally,
the precision is 1 at all recall levels. Using more data can help improve the average precision, but
might require more training time. Plot the PR curve.

figure
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f',ap))

Generate Calibration Result File for the Network

Create a dlquantizer object and specify the detector to quantize. By default, the execution
environment is set to GPU. To learn about the products required to quantize and deploy the detector
to a GPU environment, see “Quantization Workflow Prerequisites” (Deep Learning Toolbox).

quantObj = dlquantizer(detector)

quantObj = 
  dlquantizer with properties:

           NetworkObject: [1×1 yolov2ObjectDetector]
    ExecutionEnvironment: 'GPU'

Specify the metric function in a dlquantizationOptions object.
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quantOpts = dlquantizationOptions;
quantOpts = dlquantizationOptions('MetricFcn', ...
    {@(x)hVerifyDetectionResults(x, detector.Network, preprocessedValidationData)});

Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network, as well as the
dynamic ranges of the activations in all layers of the network. The function returns a table. Each row
of the table contains range information for a learnable parameter of the optimized network.

calResults = calibrate(quantObj,preprocessedCalibrationData)

Use the validate function to quantize the learnable parameters in the convolution layers of the
network and exercise the network. The function uses the metric function defined in the
dlquantizationOptions object to compare the results of the network before and after
quantization.

Examine the MetricResults.Result field of the validation output to see the performance of the
optimized network. The first row in the results table contains the information for the original,
floating-point implementation. The second row contains the information for the quantized
implementation. The output of the metric function is displayed in the MetricOutput column.

valResults = validate(quantObj,preprocessedValidationData,quantOpts)
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valResults = struct with fields:
       NumSamples: 88
    MetricResults: [1×1 struct]
       Statistics: [2×2 table]

valResults.MetricResults.Result

The metrics show that quantization reduces the required memory by approximately 75% and the
network accuracy by approximately 3%.

To visualize the calibration statistics, use the Deep Network Quantizer app. First, save the
dlquantizer object.

save('dlquantObj.mat','quantObj')

In the MATLAB® Command Window, open the Deep Network Quantizer app.

deepNetworkQuantizer

Then import the dlquantizer object dq in the Deep Network Quantizer app by selecting New >
Import dlquantizer object.

Generate CUDA Code

After you train and evaluate the detector, you can generate code for the ssdObjectDetector or
yolov2ObjectDetector using GPU Coder™. For more details, see “Code Generation for Object
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Detection by Using Single Shot Multibox Detector” (Computer Vision Toolbox) and “Code Generation
for Object Detection by Using YOLO v2” on page 4-180.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';

% Check compute capability of GPU
gpuInfo = gpuDevice;
cc = gpuInfo.ComputeCapability;

% Create deep learning code generation configuration object
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');

% INT8 precision requires a CUDA GPU with minimum compute capability of
% 6.1, 6.3, or higher
cfg.GpuConfig.ComputeCapability = cc;
cfg.DeepLearningConfig.DataType = 'int8';
cfg.DeepLearningConfig.CalibrationResultFile = 'dlquantObj.mat';

Run the codegen command to generate CUDA code.

codegen -config cfg mynet_detect -args {coder.Constant(detectorType), ones(inputSize, 'single')} -report

When code generation is successful, you can view the resulting code generation report by clicking
View Report in the MATLAB Command Window. The report is displayed in the Report Viewer window.
If the code generator detects errors or warnings during code generation, the report describes the
issues and provides links to the problematic MATLAB code. See “Code Generation Reports”.
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Parameter Pruning and Quantization of Image Classification
Network

This example shows how to prune the parameters of a trained neural network using two parameter
score metrics: The Magnitude score [1] and Synaptic Flow score [2].

In many applications where transfer learning is used to retrain an image classification network for a
new task or where a new network is trained from scratch, the optimal network architecture is not
known, and the network might be overparameterized. An overparameterized network has redundant
connections. Structured pruning, also known as sparsification, is a compression technique that aims
to identify redundant, unnecessary connections you can remove without affecting the network
accuracy. When you use pruning in combination with network quantization, you can reduce the
inference time and memory footprint of the network making it easier to deploy.

This example shows how to:

• Perform post-training, iterative, unstructured pruning without the need for training data
• Evaluate the performance of two different pruning algorithms
• Investigate the layer-wise sparsity induced after pruning
• Evaluate the impact of pruning on classification accuracy
• Evaluate the impact of quantization on the classification accuracy of the pruned network

This example uses a simple convolutional neural network to classify handwritten digits from 0 to 9.
For more information on setting up the data used for training and validation, see “Create Simple
Deep Learning Network for Classification” (Deep Learning Toolbox).

Load Pretrained Network and Data

Load the training and validation data. Train a convolutional neural network for the classification task.

[imdsTrain, imdsValidation] = loadDigitDataset;
net = trainDigitDataNetwork(imdsTrain, imdsValidation);
trueLabels = imdsValidation.Labels;
classes = categories(trueLabels);

Create a minibatchqueue object containing the validation data. Set executionEnvironment to
auto to evaluate the network on a GPU, if one is available. By default, the minibatchqueue object
converts each output to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing
Toolbox™ and a supported GPU device. For information on supported devices, see “GPU Computing
Requirements”.

executionEnvironment = ;
miniBatchSize = 128;
imdsValidation.ReadSize = miniBatchSize;
mbqValidation = minibatchqueue(imdsValidation,1,...
    'MiniBatchSize',miniBatchSize,...
    'MiniBatchFormat','SSCB',...
    'MiniBatchFcn',@preprocessMiniBatch,...
    'OutputEnvironment',executionEnvironment);
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Neural Network Pruning

The goal of neural network pruning is to identify and remove unimportant connections to reduce the
size of the network without affecting network accuracy. In the following figure, on the left, the
network has connections that map each neuron to the neuron of the next layer. After pruning, the
network has fewer connections than the original network.

A pruning algorithm assigns a score to each parameter in the network. The score ranks the
importance of each connection in the network. You can use one of two pruning approaches to achieve
a target sparsity:
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• One-shot pruning - Remove a specified percentage of connections based on their score in one step.
This method is prone to layer collapse when you specify a high sparsity value.

• Iterative pruning - Achieve the target sparsity in a series of iterative steps. You can use this
method when evaluated scores are sensitive to network structure. Scores are reevaluated at every
iteration, so using a series of steps allows the network to move toward sparsity incrementally.

This example uses the iterative pruning method to achieve a target sparsity.

Iterative Pruning

Convert to dlnetwork Object

In this example, you use the Synaptic Flow algorithm, which requires that you create a custom cost
function and evaluate the gradients with respect to the cost function to calculate the parameter
score. To create a custom cost function, first convert the pretrained network to a dlnetwork (Deep
Learning Toolbox).

Convert the network to a layer graph and remove the layers used for classification using
removeLayers.

lgraph = layerGraph(net.Layers);
lgraph = removeLayers(lgraph,["softmax","classoutput"]);
dlnet = dlnetwork(lgraph);
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Use analyzeNetwork to analyze the network architecture and learnable parameters.

analyzeNetwork(dlnet)

Evaluate the accuracy of the network before pruning.

accuracyOriginalNet = evaluateAccuracy(dlnet,mbqValidation,classes,trueLabels)

accuracyOriginalNet = 0.9908

The layers with learnable parameters are the 3 convolutional layers and one fully connected layer.
The network initially consists of total 21578 learnable parameters.

numTotalParams = sum(cellfun(@numel,dlnet.Learnables.Value))

numTotalParams = 21578

numNonZeroPerParam = cellfun(@(w)nnz(extractdata(w)),dlnet.Learnables.Value)

numNonZeroPerParam = 8×1

          72
           8
        1152
          16
        4608
          32
       15680
          10

Sparsity is defined as the percentage of parameters in the network with a value of zero. Check the
sparsity of the network.

initialSparsity = 1-(sum(numNonZeroPerParam)/numTotalParams)

initialSparsity = 0

Before pruning, the network has a sparsity of zero.

Create Iteration Scheme

To define an iterative pruning scheme, specify the target sparsity and number of iterations. For this
example, use linearly spaced iterations to achieve the target sparsity.

numIterations = 10; 
targetSparsity = 0.90;
iterationScheme = linspace(0,targetSparsity,numIterations); 

Pruning Loop

For each iteration, the custom pruning loop in this example performs the following steps:

• Calculate the score for each connection.
• Rank the scores for all connections in the network based on the selected pruning algorithm.
• Determine the threshold for removing connections with the lowest scores.
• Create the pruning mask using the threshold.
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• Apply the pruning mask to learnable parameters of the network.

Network Mask

Instead of setting entries in the weight arrays directly to zero, the pruning algorithm creates a binary
mask for each learnable parameter that specifies whether a connection is pruned. The mask allows
you to explore the behavior of the pruned network and try different pruning schemes without
changing the underlying network structure.

For example, consider the following weights.

testWeight = [10.4 5.6 0.8 9];

Create a binary mask for each parameter in testWeight.

testMask = [1 0 1 0];

Apply the mask to testWeight to get the pruned weights.

testWeightsPruned = testWeight.*testMask

testWeightsPruned = 1×4

   10.4000         0    0.8000         0

In iterative pruning, you create a binary mask for each iteration that contains pruning information.
Applying the mask to the weights array does not change either the size of the array or the structure
of the neural network. Therefore, the pruning step does not directly result in any speedup during
inference or compression of the network size on disk.

Initialize a plot that compares the accuracy of the pruned network to the original network.

figure
plot(100*iterationScheme([1,end]),100*accuracyOriginalNet*[1 1],'*-b','LineWidth',2,"Color","b")
ylim([0 100])
xlim(100*iterationScheme([1,end]))
xlabel("Sparsity (%)")
ylabel("Accuracy (%)")
legend("Original Accuracy","Location","southwest")
title("Pruning Accuracy")    
grid on

Magnitude Pruning

Magnitude pruning [1] assigns a score to each parameter equal to its absolute value. It is assumed
that the absolute value of a parameter corresponds to its relative importance to the accuracy of the
trained network.

Initialize the mask. For the first iteration, you do not prune any parameters and the sparsity is 0%.

pruningMaskMagnitude = cell(1,numIterations); 
pruningMaskMagnitude{1} = dlupdate(@(p)true(size(p)), dlnet.Learnables);

Below is an implementation of magnitude pruning. The network is pruned to various target sparsities
in a loop to provide the flexibility to choose a pruned network based on its accuracy.

lineAccuracyPruningMagnitude = animatedline('Color','g','Marker','o','LineWidth',1.5);
legend("Original Accuracy","Magnitude Pruning Accuracy","Location","southwest")
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% Compute magnitude scores
scoresMagnitude = calculateMagnitudeScore(dlnet);

for idx = 1:numel(iterationScheme)

    prunedNetMagnitude = dlnet;
    
    % Update the pruning mask
    pruningMaskMagnitude{idx} = calculateMask(scoresMagnitude,iterationScheme(idx));
    
    % Check the number of zero entries in the pruning mask
    numPrunedParams = sum(cellfun(@(m)nnz(~extractdata(m)),pruningMaskMagnitude{idx}.Value));
    sparsity = numPrunedParams/numTotalParams;
    
    % Apply pruning mask to network parameters
    prunedNetMagnitude.Learnables = dlupdate(@(W,M)W.*M, prunedNetMagnitude.Learnables, pruningMaskMagnitude{idx});
    
    % Compute validation accuracy on pruned network
    accuracyMagnitude = evaluateAccuracy(prunedNetMagnitude,mbqValidation,classes,trueLabels);
    
    % Display the pruning progress
    addpoints(lineAccuracyPruningMagnitude,100*sparsity,100*accuracyMagnitude)
    drawnow
end
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SynFlow Pruning

Synaptic flow conservation (SynFlow) [2] scores are used for pruning. You can use this method to
prune networks that use linear activation functions such as ReLU.

Initialize the mask. For the first iteration, no parameters are pruned, and the sparsity is 0%.

pruningMaskSynFlow = cell(1,numIterations); 
pruningMaskSynFlow{1} = dlupdate(@(p)true(size(p)),dlnet.Learnables);

The input data you use to compute the scores is a single image containing ones. If you are using a
GPU, convert the data to a gpuArray.

dlX = dlarray(ones(net.Layers(1).InputSize),'SSC');
if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
    dlX = gpuArray(dlX);
end

The below loop implements iterative synaptic flow score for pruning [2] where a custom cost function
evaluates the SynFlow score for each parameter used for network pruning.

lineAccuracyPruningSynflow = animatedline('Color','r','Marker','o','LineWidth',1.5);
legend("Original Accuracy","Magnitude Pruning Accuracy","Synaptic Flow Accuracy","Location","southwest")

prunedNetSynFlow = dlnet;

% Iteratively increase sparsity
for idx = 1:numel(iterationScheme)
    % Compute SynFlow scores
    scoresSynFlow = calculateSynFlowScore(prunedNetSynFlow,dlX);
    
    % Update the pruning mask
    pruningMaskSynFlow{idx} = calculateMask(scoresSynFlow,iterationScheme(idx));
    
    % Check the number of zero entries in the pruning mask
    numPrunedParams = sum(cellfun(@(m)nnz(~extractdata(m)),pruningMaskSynFlow{idx}.Value));
    sparsity = numPrunedParams/numTotalParams;
    
    % Apply pruning mask to network parameters
    prunedNetSynFlow.Learnables = dlupdate(@(W,M)W.*M, prunedNetSynFlow.Learnables, pruningMaskSynFlow{idx});
    
    % Compute validation accuracy on pruned network
    accuracySynFlow = evaluateAccuracy(prunedNetSynFlow,mbqValidation,classes,trueLabels);
     
    % Display the pruning progress
    addpoints(lineAccuracyPruningSynflow,100*sparsity,100*accuracySynFlow)
    drawnow
end
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Investigate Structure of Pruned Network

Choosing how much to prune a network is a trade-off between accuracy and sparsity. Use the sparsity
versus accuracy plot to select the iteration with the desired sparsity level and acceptable accuracy.

pruningMethod = ;

selectedIteration = ;

prunedDLNet = createPrunedNet(dlnet,selectedIteration,pruningMaskSynFlow,pruningMaskMagnitude,pruningMethod);

[sparsityPerLayer,prunedChannelsPerLayer,numOutChannelsPerLayer,layerNames] = pruningStatistics(prunedDLNet);

Earlier convolutional layers are typically pruned less since they contain more relevant information
about the core low-level structure of the image (e.g. edges and corners) which are essential for
interpreting the image.

Plot the sparsity per layer for the selected pruning method and iteration.

figure
bar(sparsityPerLayer*100)
title("Sparsity per layer")
xlabel("Layer")
ylabel("Sparsity (%)")
xticks(1:numel(sparsityPerLayer))
xticklabels(layerNames)
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xtickangle(45)
set(gca,'TickLabelInterpreter','none')

The pruning algorithm prunes single connections when you specify a low target sparsity. When you
specify a high target sparsity, the pruning algorithm can prune whole filters and neurons in
convolutional or fully connected layers.

figure
bar([prunedChannelsPerLayer,numOutChannelsPerLayer-prunedChannelsPerLayer],"stacked")
xlabel("Layer")
ylabel("Number of filters")
title("Number of filters per layer")
xticks(1:(numel(layerNames)))
xticklabels(layerNames)
xtickangle(45)
legend("Pruned number of channels/neurons" , "Original number of channels/neurons","Location","southoutside")
set(gca,'TickLabelInterpreter','none')
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Evaluate Network Accuracy

Compare the accuracy of the network before and after pruning.

YPredOriginal = modelPredictions(dlnet,mbqValidation,classes);
accOriginal = mean(YPredOriginal == trueLabels)

accOriginal = 0.9908

YPredPruned = modelPredictions(prunedDLNet,mbqValidation,classes);
accPruned = mean(YPredPruned == trueLabels)

accPruned = 0.9328

Create a confusion matrix chart to explore the true class labels to the predicted class labels for the
original and pruned network.

figure
confusionchart(trueLabels,YPredOriginal);
title("Original Network")
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The validation set of the digits data contains 250 images for each class, so if a network predicts the
class of each image perfectly, all scores on the diagonal equal 250 and no values are outside of the
diagonal.

confusionchart(trueLabels,YPredPruned);
title("Pruned Network")
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When pruning a network, compare the confusion chart of the original network and the pruned
network to check how the accuracy for each class label changes for the selected sparsity level. If all
numbers on the diagonal decrease roughly equally, no bias is present. However, if the decreases are
not equal, you might need to choose a pruned network from an earlier iteration by reducing the value
of the variable selectedIteration.

Quantize Pruned Network

Deep neural networks trained in MATLAB use single-precision floating point data types. Even
networks that are small require a considerable amount of memory and hardware to perform floating-
point arithmetic operations. These restrictions can inhibit deployment of deep learning models that
have low computational power and less memory resources. By using a lower precision to store the
weights and activations, you can reduce the memory requirements of the network. You can use Deep
Learning Toolbox in tandem with the Deep Learning Model Quantization Library support package to
reduce the memory footprint of a deep neural network by quantizing the weights, biases, and
activations of the convolution layers to 8-bit scaled integer data types.

Pruning a network impacts the range statistics of parameters and activations at each layer, so the
accuracy of the quantized network can change. To explore this difference, quantize the pruned
network and use the quantized network to perform inference.

Split the data into calibration and validation data sets.

calibrationDataStore = splitEachLabel(imdsTrain,0.1,'randomize');
validationDataStore = imdsValidation;

Create a dlquantizer object and specify the pruned network as the network to quantize.
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prunedNet  = assembleNetwork([prunedDLNet.Layers ; net.Layers(end-1:end)]);

quantObjPrunedNetwork = dlquantizer(prunedNet,'ExecutionEnvironment','GPU'); 

Use the calibrate function to exercise the network with the calibration data and collect range
statistics for the weights, biases, and activations at each layer.

calResults = calibrate(quantObjPrunedNetwork, calibrationDataStore)

Use the validate function to compare the results of the network before and after quantization using
the validation data set.

valResults = validate(quantObjPrunedNetwork, validationDataStore);

Examine the MetricResults.Result field of the validation output to see the accuracy of the
quantized network.

valResults.MetricResults.Result
valResults.Statistics

Mini Batch Preprocessing Function

The preprocessMiniBatch function preprocesses a mini-batch of predictors by extracting the
image data from the input cell array and concatenate into a numeric array. For grayscale input,
concatenating the data over the fourth dimension adds a third dimension to each image to use as a
singleton channel dimension.

function X = preprocessMiniBatch(XCell)
% Extract image data from cell and concatenate.
X = cat(4,XCell{:});
end

Model Accuracy Function

Evaluate the classification accuracy of the dlnetwork. Accuracy is the percentage of labels correctly
classified by the network.

function accuracy = evaluateAccuracy(dlnet,mbqValidation,classes,trueLabels)
YPred = modelPredictions(dlnet,mbqValidation,classes);
accuracy = mean(YPred == trueLabels);
end

SynFlow Score Function

The calculateSynFlowScore function calculates Synaptic Flow (SynFlow) scores. Synaptic
saliency [2] is described as the class of gradient-based scores defined by the product of gradient of
loss multiplied by the parameter value:

synFlowScore = d loss
dθ *θ

The SynFlow score is a synaptic saliency score that uses the sum of all network outputs as a loss
function:

loss = ∑ f abs θ , X

f  is the function represented by the neural network
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θ are the parameters of the network

X is the input array to the network

To compute parameter gradients with respect to this loss function, use dlfeval and a model
gradients function.

function score = calculateSynFlowScore(dlnet,dlX)
dlnet.Learnables = dlupdate(@abs, dlnet.Learnables);
gradients = dlfeval(@modelGradients,dlnet,dlX);
score = dlupdate(@(g,w)g.*w, gradients, dlnet.Learnables);
end

Model Gradients for SynFlow Score

function gradients = modelGradients(dlNet,inputArray)
% Evaluate the gradients on a given input to the dlnetwork
dlYPred = predict(dlNet,inputArray);
pseudoloss = sum(dlYPred,'all');
gradients = dlgradient(pseudoloss,dlNet.Learnables);
end

Magnitude Score Function

The calculateMagnitudeScore function returns the magnitude score, defined as the element-wise
absolute value of the parameters.

function score = calculateMagnitudeScore(dlnet)
score = dlupdate(@abs, dlnet.Learnables);
end

Mask Generation Function

The calculateMask function returns a binary mask for the network parameters based on the given
scores and the target sparsity.

function mask = calculateMask(scoresMagnitude,sparsity)
% Compute a binary mask based on the parameter-wise scores such that the mask contains a percentage of zeros as specified by sparsity.

% Flatten the cell array of scores into one long score vector
flattenedScores = cell2mat(cellfun(@(S)extractdata(gather(S(:))),scoresMagnitude.Value,'UniformOutput',false));
% Rank the scores and determine the threshold for removing connections for the
% given sparsity
flattenedScores = sort(flattenedScores);
k = round(sparsity*numel(flattenedScores));
if k==0
    thresh = 0;
else
    thresh = flattenedScores(k);
end
% Create a binary mask 
mask = dlupdate( @(S)S>thresh, scoresMagnitude);
end

Model Predictions Function

The modelPredictions function takes as input a dlnetwork object dlnet, a minibatchqueue of
input data mbq, and the network classes, and computes the model predictions by iterating over all
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data in the minibatchqueue object. The function uses the onehotdecode function to find the
predicted class with the highest score.

function predictions = modelPredictions(dlnet,mbq,classes)
predictions = [];
while hasdata(mbq)
    dlXTest = next(mbq);
    dlYPred = softmax(predict(dlnet,dlXTest));
    YPred = onehotdecode(dlYPred,classes,1)';
    predictions = [predictions; YPred];
end
reset(mbq)
end

Apply Pruning Function

The createPrunedNet function returns the pruned dlnetwork for the specified pruning algorithm
and iteration.

function prunedNet = createPrunedNet(dlnet,selectedIteration,pruningMaskSynFlow,pruningMaskMagnitude,pruningMethod)
switch pruningMethod
    case "Magnitude"
        prunedNet = dlupdate(@(W,M)W.*M, dlnet, pruningMaskMagnitude{selectedIteration});
    case "SynFlow"
        prunedNet = dlupdate(@(W,M)W.*M, dlnet, pruningMaskSynFlow{selectedIteration});
end
end

Pruning Statistics Function

The pruningStatistics function extracts detailed layer-level pruning statistics such as the layer-
level sparsity and the number of filters or neurons being pruned.

sparsityPerLayer - percentage of parameters pruned in each layer

prunedChannelsPerLayer - number of channels/neurons in each layer that can be removed as a result
of pruning

numOutChannelsPerLayer - number of channels/neurons in each layer

function [sparsityPerLayer,prunedChannelsPerLayer,numOutChannelsPerLayer,layerNames] = pruningStatistics(dlnet)

layerNames = unique(dlnet.Learnables.Layer,'stable');
numLayers = numel(layerNames);
layerIDs = zeros(numLayers,1);
for idx = 1:numel(layerNames)
    layerIDs(idx) = find(layerNames(idx)=={dlnet.Layers.Name});
end

sparsityPerLayer = zeros(numLayers,1);
prunedChannelsPerLayer = zeros(numLayers,1);
numOutChannelsPerLayer = zeros(numLayers,1);

numParams = zeros(numLayers,1);
numPrunedParams = zeros(numLayers,1);
for idx = 1:numLayers
    layer = dlnet.Layers(layerIDs(idx));
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    % Calculate the sparsity
    paramIDs = strcmp(dlnet.Learnables.Layer,layerNames(idx));
    paramValue = dlnet.Learnables.Value(paramIDs);
    for p = 1:numel(paramValue)
        numParams(idx) = numParams(idx) + numel(paramValue{p});
        numPrunedParams(idx) = numPrunedParams(idx) + nnz(extractdata(paramValue{p})==0);
    end

    % Calculate channel statistics
    sparsityPerLayer(idx) = numPrunedParams(idx)/numParams(idx);
    switch class(layer)
        case "nnet.cnn.layer.FullyConnectedLayer"
            numOutChannelsPerLayer(idx) = layer.OutputSize;
            prunedChannelsPerLayer(idx) = nnz(all(layer.Weights==0,2)&layer.Bias(:)==0);
        case "nnet.cnn.layer.Convolution2DLayer"
            numOutChannelsPerLayer(idx) = layer.NumFilters;
            prunedChannelsPerLayer(idx) = nnz(reshape(all(layer.Weights==0,[1,2,3]),[],1)&layer.Bias(:)==0);
        case "nnet.cnn.layer.GroupedConvolution2DLayer"
            numOutChannelsPerLayer(idx) = layer.NumGroups*layer.NumFiltersPerGroup;
            prunedChannelsPerLayer(idx) = nnz(reshape(all(layer.Weights==0,[1,2,3]),[],1)&layer.Bias(:)==0);
        otherwise
            error("Unknown layer: "+class(layer))
    end
end
end

Load Digits Data set Function

The loadDigitDataset function loads the Digits data set and splits the data into training and
validation data.

function [imdsTrain, imdsValidation] = loadDigitDataset()
digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ...
    'nndatasets','DigitDataset');
imds = imageDatastore(digitDatasetPath, ...
    'IncludeSubfolders',true,'LabelSource','foldernames');
[imdsTrain, imdsValidation] = splitEachLabel(imds,0.75,"randomized");
end

Train Digit Recognition Network Function

The trainDigitDataNetwork function trains a convolutional neural network to classify digits in
grayscale images.

function net = trainDigitDataNetwork(imdsTrain,imdsValidation)
layers = [
    imageInputLayer([28 28 1],"Normalization","rescale-zero-one")
    convolution2dLayer(3,8,'Padding','same')
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,16,'Padding','same')
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,32,'Padding','same')
    reluLayer
    

4 Deep Learning

4-264



    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

% Specify the training options
options = trainingOptions('sgdm', ...
    'InitialLearnRate',0.01, ...
    'MaxEpochs',10, ...
    'Shuffle','every-epoch', ...
    'ValidationData',imdsValidation, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','none',"ExecutionEnvironment","auto");

% Train network
net = trainNetwork(imdsTrain,layers,options);
end
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Code Generation For Aerial Lidar Semantic Segmentation
Using PointNet++ Deep Learning

This example shows how to generate CUDA® MEX code for a PointNet++ [1 on page 4-271] network
for lidar semantic segmentation. This example uses a pretrained PointNet++ network that can
segment unorganized lidar point clouds belonging to eight classes (buildings, cars, trucks, poles,
power lines, fences, ground, and vegetation). For more information on PointNet++ network, see
“Getting Started with PointNet++” (Lidar Toolbox).

Third-Party Prerequisites

Required

• CUDA enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static libraries, dynamic libraries, or executables, this example has the
following additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

To verify that the compilers and libraries for running this example are set up correctly, use the
coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Load PointNet++ Network

Use the getPointnetplusNet function, attached as a supporting file to this example, to load the
pretrained PointNet++ network. For more information on how to train this network, see “Aerial Lidar
Semantic Segmentation Using PointNet++ Deep Learning” (Lidar Toolbox) example.

net = getPointnetplusNet;

The pretrained network is a DAG network. To display an interactive visualization of the network
architecture, use the analyzeNetwork (Deep Learning Toolbox) function.

The sampling and grouping layer, and the interpolation layer are implemented using the
functionLayer (Deep Learning Toolbox) function. Both pointCloudInputLayer and the
functionLayer functions do not support code generation. For code generation support, replace the
function layers with custom layers and the pointCloudInputLayer with the imageInputLayer by
using the helperReplaceInputAndFunctionLayers helper function, attached to this example as
a support file. This function saves the network as a MAT file with the name
pointnetplusCodegenNet.mat.
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net = helperReplaceInputAndFunctionLayers(net);

pointnetplusPredict Entry-Point Function

The pointnetplusPredict entry-point function takes a point cloud data matrix as input and
performs prediction on it by using the deep learning network saved in the
pointnetplusCodegenNet.mat file. The function loads the network object from the
pointnetplusCodegenNet.mat file into a persistent variable mynet and reuses the persistent
variable in subsequent prediction calls.

type('pointnetplusPredict.m');

function out = pointnetplusPredict(in)
%#codegen

% A persistent object mynet is used to load the DAG network object. At
% the first call to this function, the persistent object is constructed and
% setup. When the function is called subsequent times, the same object is
% reused to call predict on inputs, thus avoiding reconstructing and
% reloading the network object.

% Copyright 2021 The MathWorks, Inc.

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('pointnetplusCodegenNet.mat');
end

% pass in input
out = predict(mynet,in);

Generate CUDA MEX Code

To generate CUDA® code for the pointnetplusPredict entry-point function, create a GPU code
configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig function to create a CuDNN deep learning configuration object and
assign it to the DeepLearningConfig property of the GPU code configuration object. Run the
codegen command with the size of point cloud data in the input layer of the network, which in this
case is [8192 1 3].

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig(TargetLibrary='cudnn');
codegen -config cfg pointnetplusPredict -args {randn(8192,1,3,'single')} -report

Code generation successful: View report

To generate CUDA® code for the TensorRT target, create and use a TensorRT deep learning
configuration object instead of the CuDNN configuration object.

Segment Aerial Point Cloud Using Generated MEX Code

The network in this example is trained on the DALES data set [2 on page 4-271]. Follow the
instructions on the DALES website to download the data set to the folder specified by the
dataFolder variable. Create a folder to store the test data.
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dataFolder = fullfile(tempdir,'DALES');
testDataFolder = fullfile(dataFolder,'dales_las','test');

Each point cloud in the DALES dataset covers an area of 500-by-500 meters, which is much larger
than the typical area covered by terrestrial lidar point clouds. For efficient memory processing, divide
the point cloud into small, non-overlapping blocks by using a blockedPointCloud (Lidar Toolbox)
object.

Define the block dimensions using the blockSize parameter. As the size of each point cloud in the
dataset varies, set the z-dimension of the block to Inf to avoid block creation along z-axis.

blockSize = [51 51 Inf];

First, create a blockedPointCloud (Lidar Toolbox) object. Then, create a
blockedPointCloudDatastore (Lidar Toolbox) object on the test data using the
blockedPointCloud (Lidar Toolbox) object.

tbpc = blockedPointCloud(fullfile(testDataFolder,'5080_54470.las'),blockSize);
tbpcds = blockedPointCloudDatastore(tbpc);

Define the parameters used to train the network. For more details, see the “Aerial Lidar Semantic
Segmentation Using PointNet++ Deep Learning” (Lidar Toolbox) example.

numNearestNeighbors = 20;
radius = 0.05;
numPoints = 8192;
maxLabel = 1;
classNames = [
    "ground"
    "vegetation"
    "cars"
    "trucks"
    "powerlines"
    "fences"
    "poles"
    "buildings"
    ];
numClasses = numel(classNames);

Initialize placeholders for the predicted and target labels.

labelsDensePred = [];
labelsDenseTarget = [];

Apply the same transformation used on training data to the test data, tbpcds, follow these steps.

• Extract the point cloud.
• Downsample the point cloud to a specified number, numPoints.
• Normalize the point clouds to the range [0 1].
• Convert the point cloud to make it compatible with the input layer of the network.

Perform inference on the test point cloud data to compute prediction labels. Predict the labels of the
sparse point cloud using the pointnetplusPredict_mex function. Then interpolate the prediction
labels of the sparse point cloud to obtain prediction labels of the dense point cloud and iterate this
process on all the non-overlapping blocks.
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while hasdata(tbpcds)
    
    % Read the block along with block information.
    [ptCloudDense,infoDense] = read(tbpcds);

    % Extract the labels from the block information.
    labelsDense = infoDense.PointAttributes.Classification;
    
    % Select only labeled data.
    ptCloudDense = select(ptCloudDense{1},labelsDense~=0);
    labelsDense = labelsDense(labelsDense~=0);

    % Use the helperDownsamplePoints function, attached to this example as a
    % supporting file, to extract a downsampled point cloud from the
    % dense point cloud.
    ptCloudSparse = helperDownsamplePoints(ptCloudDense, ...
        labelsDense,numPoints);

    % Make the spatial extent of the dense point cloud equal to the sparse
    % point cloud.
    limits = [ptCloudDense.XLimits;ptCloudDense.YLimits;ptCloudDense.ZLimits];
    ptCloudSparseLocation = ptCloudSparse.Location;
    ptCloudSparseLocation(1:2,:) = limits(:,1:2)';
    ptCloudSparse = pointCloud(ptCloudSparseLocation,Color=ptCloudSparse.Color, ...
        Intensity=ptCloudSparse.Intensity, Normal=ptCloudSparse.Normal);

    % Use the helperNormalizePointCloud function, attached to this example as
    % a supporting file, to normalize the point cloud between 0 and 1.
    ptCloudSparseNormalized = helperNormalizePointCloud(ptCloudSparse);
    ptCloudDenseNormalized = helperNormalizePointCloud(ptCloudDense);

    % Use the helperTransformToTestData function, defined at the end of this
    % example, to convert the point cloud to a cell array and to permute the
    % dimensions of the point cloud to make it compatible with the input layer
    % of the network.
    ptCloudSparseForPrediction = helperTransformToTestData(ptCloudSparseNormalized);

    % Get the output predictions.
    scoresPred = pointnetplusPredict_mex(single(ptCloudSparseForPrediction{1,1}));
    [~,labelsSparsePred] = max(scoresPred,[],3);
    labelsSparsePred = uint8(labelsSparsePred);

    % Use the helperInterpolate function, attached to this example as a
    % supporting file, to calculate labels for the dense point cloud,
    % using the sparse point cloud and labels predicted on the sparse point cloud.
    interpolatedLabels = helperInterpolate(ptCloudDenseNormalized, ...
        ptCloudSparseNormalized,labelsSparsePred,numNearestNeighbors, ...
        radius,maxLabel,numClasses);

    % Concatenate the predicted and target labels from the blocks.
    labelsDensePred = vertcat(labelsDensePred,interpolatedLabels);
    labelsDenseTarget = vertcat(labelsDenseTarget,labelsDense);
end

Starting parallel pool (parpool) using the 'Processes' profile ...
Connected to the parallel pool (number of workers: 6).

For better visualisation, display a single block inferred from the point cloud data.
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figure;
ax = pcshow(ptCloudDense.Location,interpolatedLabels);
axis off;
helperLabelColorbar(ax,classNames);
title("Point Cloud Overlaid with Detected Semantic Labels");

Supporting Functions

The helperLabelColorbar function adds a colorbar to the current axis. The colorbar is formatted
to display the class names with the color.

function helperLabelColorbar(ax,classNames)
% Colormap for the original classes.
cmap = [[0,0,255];
    [0,255,0];
    [255,192,203];
    [255,255,0];
    [255,0,255];
    [255,165,0];
    [139,0,150];
    [255,0,0]];
cmap = cmap./255;
cmap = cmap(1:numel(classNames),:);
colormap(ax,cmap);

% Add colorbar to current figure.
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c = colorbar(ax);
c.Color = 'w';

% Center tick labels and use class names for tick marks.
numClasses = size(classNames, 1);
c.Ticks = 1:1:numClasses;
c.TickLabels = classNames;

% Remove tick mark.
c.TickLength = 0;
end

The helperTransformToTestData function converts the point cloud into a cell array and permutes
the dimensions of the point cloud to make it compatible with the input layer of the network.

function data = helperTransformToTestData(data)
if ~iscell(data)
    data = {data};
end
numObservations = size(data,1);
for i = 1:numObservations
    tmp = data{i,1}.Location;
    data{i,1} = permute(tmp,[1 3 2]);
end
end
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Code Generation For Lidar Object Detection Using PointPillars
Deep Learning

This example shows how to generate CUDA® MEX for a PointPillars object detector. For more
information, see “Lidar 3-D Object Detection Using PointPillars Deep Learning” (Lidar Toolbox)
example from the Lidar Toolbox™.

Third-Party Prerequisites

Required

• CUDA enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static and dynamic libraries or executables, this example has the
following additional requirements.

• NVIDIA CUDA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

To verify that the compilers and libraries for running this example are set up correctly, use the
coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Pretrained PointPillars Network

Load the pretrained pointPillarsObjectDetector (Lidar Toolbox) trained in the Lidar 3-D Object
Detection Using PointPillars Deep Learning example. To train the detector yourself, see “Lidar 3-D
Object Detection Using PointPillars Deep Learning” (Lidar Toolbox).

matFile = 'pretrainedPointPillarsDetector.mat';
pretrainedDetector = load('pretrainedPointPillarsDetector.mat','detector');
detector = pretrainedDetector.detector;

pointpillarsDetect Entry-Point Function

The pointpillarsDetect entry-point function takes in the point cloud and confidence threshold as
input and passes them to a trained pointPillarsObjectDetector (Lidar Toolbox) for prediction
through the pointpillarDetect function. The pointpillarsDetect function loads the detector
object from the MAT file into a persistent variable and reuses the persistent object for subsequent
prediction calls.

type('pointpillarsDetect.m')
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function [bboxes,scores,labels] = pointpillarsDetect(matFile,dataLoc,dataInt,threshold)
% Predict the output of network and extract the confidence, x, y,
% width, height, and class.

% load the deep learning network for prediction
persistent pointPillarObj;

if isempty(pointPillarObj)
    pointPillarObj = coder.loadDeepLearningNetwork(matFile);
end

ptCloud = pointCloud(dataLoc,'Intensity',dataInt);

[bboxes,scores,labels] = pointPillarObj.detect(ptCloud,'Threshold',threshold);
end

Evaluate the detector for Object Detection

Read the point cloud.

pc = pcread('pandasetDrivingData.pcd');

Use the detect method on the pretrained detector.

confidenceThreshold = 0.7;
[bboxes,~,labels] = detect(detector,pc,'Threshold',confidenceThreshold);
bboxesCar = bboxes(labels == 'Car',:);
bboxesTruck = bboxes(labels == 'Truck',:);

Display the detections on the point cloud.

helperDisplay3DBoxesOverlaidPointCloud(pc.Location,bboxesCar,'green',...
                      bboxesTruck,'magenta','Predicted bounding boxes');
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Generate CUDA MEXscatter

To generate CUDA® code for the pointpillarsDetect entry-point function, create a GPU code
configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig function to create a cuDNN deep learning configuration object and
assign it to the DeepLearningConfig property of the GPU code configuration object.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig(TargetLibrary='cudnn');

dataLoc = pc.Location;
dataInt = pc.Intensity;

args = {coder.Constant(matFile) coder.typeof(dataLoc,[Inf,3],[1 0]) coder.typeof(dataInt,[Inf,1],[1 0]) coder.typeof(confidenceThreshold)};

codegen -config cfg pointpillarsDetect -args args -report

Code generation successful: View report

Run the Generated MEX

Call the generated CUDA MEX with the point cloud. Display the results.

[bboxes,~,labels] = pointpillarsDetect_mex(matFile,dataLoc,dataInt,confidenceThreshold);
bboxesCar = bboxes(labels == 'Car',:);
bboxesTruck = bboxes(labels == 'Truck',:);
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helperDisplay3DBoxesOverlaidPointCloud(pc.Location,bboxesCar,'green',...
                      bboxesTruck,'magenta','Predicted bounding boxes');

Helper Functions

function helperDisplay3DBoxesOverlaidPointCloud(ptCld,labelsCar,carColor,...
    labelsTruck,truckColor,titleForFigure)
% Display the point cloud with different colored bounding boxes for different
% classes
    figure;
    ax = pcshow(ptCld);
    showShape('cuboid',labelsCar,'Parent',ax,'Opacity',0.1,'Color',...
        carColor,'LineWidth',0.5);
    hold on;
    showShape('cuboid',labelsTruck,'Parent',ax,'Opacity',0.1,'Color',...
        truckColor,'LineWidth',0.5);
    title(titleForFigure);
    zoom(ax,1.5);
end
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Code Generation for Object Detection Using YOLO v4 Deep
Learning

This example shows how to generate standalone CUDA® executable for a You Only Look Once v4
(YOLO v4) object detector. This example uses a lightweight version of the YOLO v4 network with
fewer network layers. It uses a feature pyramid network as the neck and has two YOLO v4 detection
heads. The network was trained on the COCO dataset. For more information about the YOLO v4
object detection network, see “Getting Started with YOLO v4” (Computer Vision Toolbox) and
yolov4ObjectDetector (Computer Vision Toolbox).

Third-Party Prerequisites

Required

• CUDA enabled NVIDIA® GPU and compatible driver

For non-MEX builds, such as static, dynamic libraries or executables, this example additionally
requires:

• NVIDIA CUDA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Verify GPU Environment

To verify that the compilers and libraries for this example are set up correctly, use the
coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Load Pretrained Network

This example uses a pretrained YOLO v4 object detection network trained on the COCO dataset. The
object detector can detect and identify 80 different objects. To use this network, download and install
the Computer Vision Toolbox Model for YOLO v4 Object Detection from Add-On Explorer. For more
information about installing add-ons, see “Get and Manage Add-Ons”.

Specify the name for the network and save the network to a MAT-file.

name = "tiny-yolov4-coco";
vehicleDetector =  yolov4ObjectDetector(name);
save('tinyyolov4coco.mat','vehicleDetector');
net = vehicleDetector.Network;
disp(vehicleDetector)

  yolov4ObjectDetector with properties:

        Network: [1×1 dlnetwork]
    AnchorBoxes: {2×1 cell}

 Code Generation for Object Detection Using YOLO v4 Deep Learning

4-277

https://www.mathworks.com/matlabcentral/fileexchange/107969-computer-vision-toolbox-model-for-yolo-v4-object-detection


     ClassNames: {80×1 cell}
      InputSize: [416 416 3]
      ModelName: 'tiny-yolov4-coco'

Download Test Traffic Video

To test the model, download the video file from the MathWorks website. The file is approximately 40
MB in size.

if ~exist('./downtown_short.mp4', 'file')
    url = 'https://www.mathworks.com/supportfiles/gpucoder/media/downtown_short.mp4';
    websave('downtown_short.mp4', url);
end

The tinyyolov4cocoDetect Entry-Point Function

The tinyyolov4Detect entry-point function runs the detector on the video file by using the deep
learning network in the tinyyolov4coco.mat file. The function loads the network object from the
tinyyolov4coco.mat file into a persistent variable yolov4Obj and reuses the persistent object
during subsequent detection calls. Then it sets up the video file reader to read the input video and
creates a video player to display the video and the output detections.

type('tinyyolov4cocoDetect.m')

function tinyyolov4cocoDetect()
%#codegen

%   Copyright 2022 The MathWorks, Inc.

persistent yolov4Obj;

if isempty(yolov4Obj)
    yolov4Obj = coder.loadDeepLearningNetwork('tinyyolov4coco.mat');
end

% Read the input video and create a video player
videoFile = 'downtown_short.mp4';

videoFreader = vision.VideoFileReader(videoFile, 'VideoOutputDataType', 'uint8');
depVideoPlayer = vision.DeployableVideoPlayer();

cont = ~isDone(videoFreader);
while cont
    I = step(videoFreader);
    in = imresize(I, [416,416]);
    % Call to detect method
    [bboxes, ~, labels] = detect(yolov4Obj, in, Threshold = 0.3);
    
    % Convert categorical labels to cell array of charactor vectors
    labels = cellstr(labels);
    
    % Annotate detections in the image.
    outImg = insertObjectAnnotation(in, 'rectangle', bboxes, labels);

    step(depVideoPlayer, outImg); % display video
    cont = ~isDone(videoFreader); 
%     pause(0.05); % adjust frame rate
end
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Generate Executable

To generate CUDA executable code for the entry-point function, create a GPU code configuration
object and set the target language to C++. Use the coder.DeepLearningConfig function to create
a CuDNN deep learning configuration object and assign it to the DeepLearningConfig property of
the GPU code configuration object. Then run the codegen command.

cfg = coder.gpuConfig('exe');
cfg.GenerateExampleMain = 'GenerateCodeAndCompile';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');

codegen -config cfg tinyyolov4cocoDetect -report

Code generation successful: View report

Execute Standalone Code

When you run the generated standalone executable, it displays the detection results frame-by-frame.
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Related Examples
• “Object Detection Using YOLO v4 Deep Learning” (Computer Vision Toolbox)
• “Code Generation for Object Detection by Using YOLO v2” on page 4-180
• “Code Generation For Object Detection Using YOLO v3 Deep Learning” on page 4-217

More About
• “Getting Started with YOLO v4” (Computer Vision Toolbox)
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Targeting Embedded GPU Devices

• “Build and Run an Executable on NVIDIA Hardware” on page 5-2
• “Build and Run an Executable on NVIDIA Hardware Using GPU Coder App” on page 5-7
• “Relocate Generated Code to Another Development Environment” on page 5-14
• “Getting Started with the MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE

Platforms” on page 5-24
• “Sobel Edge Detection on NVIDIA Jetson Nano Using Raspberry Pi Camera Module V2”

on page 5-29
• “Semantic Segmentation on NVIDIA DRIVE” on page 5-34
• “Top-Hat Filtering to Remove Uneven Background Illumination on NVIDIA Jetson TX2 Developer

Kit” on page 5-39
• “Deployment and Classification of Webcam Images on NVIDIA Jetson TX2 Platform” on page 5-44
• “Ground Plane Segmentation and Obstacle Detection on NVIDIA Jetson Xavier™ NX Embedded

platform” on page 5-49
• “Deploy Signal Classifier on NVIDIA Jetson Using Wavelet Analysis and Deep Learning”

on page 5-57

You can use GPU Coder to generate CUDA code for targeting embedded GPU platforms. Specifically,
you can target the NVIDIA development boards such as Jetson AGX, Nano, TX2, TX1, and DRIVE PX2
platforms from either Windows or Linux host development systems.
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Build and Run an Executable on NVIDIA Hardware
In this section...
“Learning Objectives” on page 5-2
“Tutorial Prerequisites” on page 5-2
“Example: Vector Addition” on page 5-3
“Create a Live Hardware Connection Object” on page 5-3
“Generate CUDA Executable Using GPU Coder” on page 5-4
“Run the Executable and Verify the Results” on page 5-5

Using GPU Coder and the MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE
Platforms, you can target NVIDIA DRIVE and Jetson hardware platforms. After connecting to the
hardware platforms, you can perform basic operations, generate CUDA executable from a MATLAB
entry-point function, and run the executable on the hardware.

Note Starting in R2021a, the GPU Coder Support Package for NVIDIA GPUs is named MATLAB
Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms. To use this support package
in R2021a, you must have the MATLAB Coder product.

Learning Objectives
In this tutorial, you learn how to:

• Prepare your MATLAB code for CUDA code generation by using the kernelfun pragma.
• Connect to the NVIDIA target board.
• Generate and deploy a CUDA executable on the target board.
• Run the executable on the board and verify the results.

Tutorial Prerequisites
Target Board Requirements

• NVIDIA DRIVE PX2 or Jetson embedded platform.
• Ethernet crossover cable to connect the target board and host PC (if the target board cannot be

connected to a local network).
• NVIDIA CUDA Toolkit installed on the board.
• Environment variables on the target for the compilers and libraries. For information on the

supported versions of the compilers, libraries, and their setup, see “Install and Setup
Prerequisites for NVIDIA Boards” (MATLAB Coder Support Package for NVIDIA Jetson and
NVIDIA DRIVE Platforms).

Development Host Requirements

• NVIDIA CUDA Toolkit on the host.
• Environment variables on the host for the compilers and libraries. For information on the

supported versions of the compilers and libraries, see “Third-Party Hardware”. For setting up the
environment variables, see “Environment Variables”.
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Example: Vector Addition
This tutorial uses a simple vector addition example to demonstrate the build and deployment
workflow on NVIDIA GPUs. Create a MATLAB function myAdd.m that acts as the entry-point for code
generation. Alternatively, use the files in the “Getting Started with the MATLAB Coder Support
Package for NVIDIA Jetson and NVIDIA DRIVE Platforms” on page 5-24 example for this tutorial.
The easiest way to create CUDA code for this function is to place the coder.gpu.kernelfun
pragma in the function. When the GPU Coder encounters kernelfun pragma, it attempts to
parallelize the computations within this function and map them to the GPU.

function out = myAdd(inp1,inp2) %#codegen
coder.gpu.kernelfun();
out = inp1 + inp2;
end

Create a Live Hardware Connection Object
The support package software uses an SSH connection over TCP/IP to execute commands while
building and running the generated CUDA code on the DRIVE or Jetson platforms. Connect the target
platform to the same network as the host computer or use an Ethernet crossover cable to connect the
board directly to the host computer. Refer to the NVIDIA documentation on how to set up and
configure your board.

To communicate with the NVIDIA hardware, you must create a live hardware connection object by
using the jetson or drive function. To create a live hardware connection object using the function,
provide the host name or IP address, user name, and password of the target board. For example to
create live object for Jetson hardware:

hwobj = jetson('jetson-board-name','ubuntu','ubuntu');

The software performs a check of the hardware, compiler tools, libraries, IO server installation, and
gathers peripheral information on target. This information is displayed in the command window.

Checking for CUDA availability on the Target...
Checking for NVCC in the target system path...
Checking for CUDNN library availability on the Target...
Checking for TensorRT library availability on the Target...
Checking for Prerequisite libraries is now complete.
Gathering hardware details...
Checking for third-party library availability on the Target...
Gathering hardware details is complete.
 Board name         : NVIDIA Jetson TX2
 CUDA Version       : 10.0
 cuDNN Version      : 7.6
 TensorRT Version   : 6.0
 GStreamer Version  : 1.14.5
 V4L2 Version       : 1.14.2-1
 SDL Version        : 1.2
 OpenCV Version     : 4.1.1
 Available Webcams  : UVC Camera (046d:0809)
 Available GPUs     : NVIDIA Tegra X2

Alternatively, to create live object for DRIVE hardware:

hwobj = drive('drive-board-name','nvidia','nvidia');
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Note If there is a connection failure, a diagnostics error message is reported on the MATLAB
command window. If the connection has failed, the most likely cause is incorrect IP address or host
name.

Generate CUDA Executable Using GPU Coder
To generate a CUDA executable that can be deployed to a NVIDIA target, create a custom main file
(main.cu) and header file (main.h). The main file calls the code generated for the MATLAB entry-
point function. The main file passes a vector containing the first 100 natural numbers to the entry-
point function and writes the results to a binary file (myAdd.bin).

main.cu

//main.cu
// Include Files
#include "myAdd.h"
#include "main.h"
#include "myAdd_terminate.h"
#include "myAdd_initialize.h"
#include <stdio.h>

// Function Declarations
static void argInit_1x100_real_T(real_T result[100]);
static void main_myAdd();

// Function Definitions
static void argInit_1x100_real_T(real_T result[100])
{
  int32_T idx1;

  // Initialize each element.
  for (idx1 = 0; idx1 < 100; idx1++) {
    result[idx1] = (real_T) idx1;
  }
}

void writeToFile(real_T result[100])
{
    FILE *fid = NULL;
    fid = fopen("myAdd.bin", "wb");
    fwrite(result, sizeof(real_T), 100, fid);
    fclose(fid);
}

static void main_myAdd()
{
  real_T out[100];
  real_T b[100];
  real_T c[100];

  argInit_1x100_real_T(b);
  argInit_1x100_real_T(c);
  
  myAdd(b, c, out);
  writeToFile(out);  // Write the output to a binary file
}
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// Main routine
int32_T main(int32_T, const char * const [])
{
  // Initialize the application.
  myAdd_initialize();

  // Invoke the entry-point functions.
  main_myAdd();

  // Terminate the application.
  myAdd_terminate();
  return 0;
}

main.h
//main.h
#ifndef MAIN_H
#define MAIN_H

// Include Files
#include <stddef.h>
#include <stdlib.h>
#include "rtwtypes.h"
#include "myAdd_types.h"

// Function Declarations
extern int32_T main(int32_T argc, const char * const argv[]);

#endif

Create a GPU code configuration object for generating an executable. Use the coder.hardware
function to create a configuration object for the DRIVE or Jetson platform and assign it to the
Hardware property of the code configuration object cfg. Use the BuildDir property to specify the
folder for performing remote build process on the target. If the specified build folder does not exist
on the target, then the software creates a folder with the given name. If no value is assigned to
cfg.Hardware.BuildDir, the remote build process happens in the last specified build folder. If
there is no stored build folder value, the build process takes place in the home folder.

cfg = coder.gpuConfig('exe');
cfg.Hardware = coder.hardware('NVIDIA Jetson');
cfg.Hardware.BuildDir = '~/remoteBuildDir';
cfg.CustomSource  = fullfile('main.cu');

To generate CUDA code, use the codegen command and pass the GPU code configuration object
along with the size of the inputs for and myAdd entry-point function. After the code generation takes
place on the host, the generated files are copied over and built on the target.

codegen('-config ',cfg,'myAdd','-args',{1:100,1:100});

Run the Executable and Verify the Results
To run the executable on the target hardware, use the runApplication() method of the hardware
object. In the MATLAB command window, enter:

pid = runApplication(hwobj,'myAdd');
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### Launching the executable on the target...
Executable launched successfully with process ID 26432.
Displaying the simple runtime log for the executable...

Copy the output bin file myAdd.bin to the MATLAB environment on the host and compare the
computed results with the results from MATLAB.

outputFile = [hwobj.workspaceDir '/myAdd.bin']
getFile(hwobj,outputFile);

% Simulation result from the MATLAB.
simOut = myAdd(0:99,0:99);

% Read the copied result binary file from target in MATLAB.
fId  = fopen('myAdd.bin','r');
tOut = fread(fId,'double');
diff = simOut - tOut';
fprintf('Maximum deviation : %f\n', max(diff(:)));

Maximum deviation between MATLAB Simulation output and GPU coder output on Target is: 0.000000

See Also
Objects
jetson | drive

More About
• “Build and Run an Executable on NVIDIA Hardware Using GPU Coder App” on page 5-7
• “Code Generation Using the Command Line Interface”
• “Code Generation by Using the GPU Coder App”
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-69
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-78
• “Stop or Restart an Executable Running on NVIDIA Hardware” (MATLAB Coder Support

Package for NVIDIA Jetson and NVIDIA DRIVE Platforms)
• “Run Linux Commands on NVIDIA Hardware” (MATLAB Coder Support Package for NVIDIA

Jetson and NVIDIA DRIVE Platforms)

5 Targeting Embedded GPU Devices

5-6



Build and Run an Executable on NVIDIA Hardware Using GPU
Coder App

In this section...
“Learning Objectives” on page 5-7
“Tutorial Prerequisites” on page 5-7
“Example: Vector Addition” on page 5-8
“Custom Main File” on page 5-8
“GPU Coder App” on page 5-9
“Run the Executable and Verify the Results” on page 5-12

Using GPU Coder and the MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE
Platforms, you can target NVIDIA DRIVE and Jetson hardware platforms. After connecting to the
target platform, you can perform basic operations, generate CUDA executable from a MATLAB
function, and run the executable on the hardware. The support package automates the deployment of
the generated CUDA code on GPU hardware platforms such as Jetson or DRIVE

Note Starting in R2021a, the GPU Coder Support Package for NVIDIA GPUs is named MATLAB
Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms. To use this support package
in R2021a, you must have the MATLAB Coder product.

Learning Objectives
In this tutorial, you learn how to:

• Prepare your MATLAB code for CUDA code generation by using the kernelfun pragma.
• Create and set up a GPU Coder project.
• Change settings to connect to the NVIDIA target board.
• Generate and deploy a CUDA executable on the target board.
• Run the executable on the board and verify the results.

Before following getting started with this tutorial, it is recommended to familiarize yourself with the
GPU Coder App. For more information, see “Code Generation by Using the GPU Coder App”.

Tutorial Prerequisites
Target Board Requirements

• NVIDIA DRIVE PX2 or Jetson embedded platform.
• Ethernet crossover cable to connect the target board and host PC (if the target board cannot be

connected to a local network).
• NVIDIA CUDA Toolkit installed on the board.
• Environment variables on the target for the compilers and libraries. For information on the

supported versions of the compilers, libraries, and their setup, see “Install and Setup
Prerequisites for NVIDIA Boards” (MATLAB Coder Support Package for NVIDIA Jetson and
NVIDIA DRIVE Platforms).
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Development Host Requirements

• NVIDIA CUDA Toolkit on the host.
• Environment variables on the host for the compilers and libraries. For information on the

supported versions of the compilers and libraries, see “Third-Party Hardware”. For setting up the
environment variables, see “Environment Variables”.

Example: Vector Addition
This tutorial uses a simple vector addition example to demonstrate the build and deployment
workflow on NVIDIA GPUs. Create a MATLAB function myAdd.m that acts as the entry-point for code
generation. Alternatively, use the files in the “Getting Started with the MATLAB Coder Support
Package for NVIDIA Jetson and NVIDIA DRIVE Platforms” on page 5-24 example for this tutorial.
The easiest way to create CUDA code for this function is to place the coder.gpu.kernelfun
pragma in the function. When the GPU Coder encounters kernelfun pragma, it attempts to
parallelize the computations within this function and maps them to the GPU.

function out = myAdd(inp1,inp2) %#codegen
coder.gpu.kernelfun();
out = inp1 + inp2;
end

Custom Main File
To generate a CUDA executable that can be deployed to a NVIDIA target, create a custom main file
(main.cu) and header file (main.h). The main file calls the code generated for the MATLAB entry-
point function. The main file passes a vector containing the first 100 natural numbers to the entry-
point function and writes the results to a binary file (myAdd.bin).

main.cu
//main.cu
// Include Files
#include "myAdd.h"
#include "main.h"
#include "myAdd_terminate.h"
#include "myAdd_initialize.h"
#include <stdio.h>

// Function Declarations
static void argInit_1x100_real_T(real_T result[100]);
static void main_myAdd();

// Function Definitions
static void argInit_1x100_real_T(real_T result[100])
{
  int32_T idx1;

  // Initialize each element.
  for (idx1 = 0; idx1 < 100; idx1++) {
    result[idx1] = (real_T) idx1;
  }
}

void writeToFile(real_T result[100])
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{
    FILE *fid = NULL;
    fid = fopen("myAdd.bin", "wb");
    fwrite(result, sizeof(real_T), 100, fid);
    fclose(fid);
}

static void main_myAdd()
{
  real_T out[100];
  real_T b[100];
  real_T c[100];

  argInit_1x100_real_T(b);
  argInit_1x100_real_T(c);
  
  myAdd(b, c, out);
  writeToFile(out);  // Write the output to a binary file
}

// Main routine
int32_T main(int32_T, const char * const [])
{
  // Initialize the application.
  myAdd_initialize();

  // Invoke the entry-point functions.
  main_myAdd();

  // Terminate the application.
  myAdd_terminate();
  return 0;
}

main.h

//main.h
#ifndef MAIN_H
#define MAIN_H

// Include Files
#include <stddef.h>
#include <stdlib.h>
#include "rtwtypes.h"
#include "myAdd_types.h"

// Function Declarations
extern int32_T main(int32_T argc, const char * const argv[]);

#endif

GPU Coder App
To open the GPU Coder app, on the MATLAB toolstrip Apps tab, under Code Generation, click the
GPU Coder app icon. You can also open the app by typing gpucoder in the MATLAB Command
Window.
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1 The app opens the Select source files page. Select myAdd.m as the entry-point function. Click
Next.

2 In the Define Input Types window, enter myAdd(1:100,1:100) and click Autodefine Input
Types, then click Next.

3 You can initiate the Check for Run-Time Issues process or click Next to go to the Generate
Code step.

4 Set the Build type to Executable and the Hardware Board to NVIDIA Jetson.

5 Click More Settings, on the Custom Code panel, enter the custom main file main.cu in the
field for Additional source files. The custom main file and the header file must be in the same
location as the entry-point file.
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6 Under the Hardware panel, enter the device address, user name, password, and build folder for
the board.
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7 Close the Settings window and click Generate. The software generates CUDA code and deploys
the executable to the folder specified. Click Next and close the app.

Run the Executable and Verify the Results
In the MATLAB command window, use the runApplication() method of the hardware object to
start the executable on the target hardware.

hwobj = jetson;
pid = runApplication(hwobj,'myAdd');

### Launching the executable on the target...
Executable launched successfully with process ID 26432.
Displaying the simple runtime log for the executable...

Copy the output bin file myAdd.bin to the MATLAB environment on the host and compare the
computed results with the results from MATLAB.
outputFile = [hwobj.workspaceDir '/myAdd.bin']
getFile(hwobj,outputFile);

% Simulation result from the MATLAB.
simOut = myAdd(0:99,0:99);
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% Read the copied result binary file from target in MATLAB.
fId  = fopen('myAdd.bin','r');
tOut = fread(fId,'double');
diff = simOut - tOut';
fprintf('Maximum deviation is: %f\n', max(diff(:)));

Maximum deviation between MATLAB Simulation output and GPU coder output on Target is: 0.000000

See Also
Objects
jetson | drive

More About
• “Build and Run an Executable on NVIDIA Hardware” on page 5-2
• “Code Generation Using the Command Line Interface”
• “Code Generation by Using the GPU Coder App”
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-69
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-78
• “Stop or Restart an Executable Running on NVIDIA Hardware” (MATLAB Coder Support

Package for NVIDIA Jetson and NVIDIA DRIVE Platforms)
• “Run Linux Commands on NVIDIA Hardware” (MATLAB Coder Support Package for NVIDIA

Jetson and NVIDIA DRIVE Platforms)
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Relocate Generated Code to Another Development
Environment

In this section...
“Package Generated Code Using the GPU Coder” on page 5-14
“Specify packNGo Options” on page 5-22

If you need to relocate the generated code files to another development environment, such as a
system or an integrated development environment (IDE) that does not include MATLAB, you can use
the packNGo function at the command line or the Package option in the GPU Coder app. The files
are packaged in a compressed file that you can relocate and unpack using a standard zip utility.

Because the code generated by using GPU Coder relies on third-party compilers, libraries to build
and run the executables, the development environment that you are relocating to must also satisfy
these requirements. For more information, see “Installing Prerequisite Products” and “Setting Up the
Prerequisite Products”.

Note GPU Coder requires that the 'minimalHeaders' option of the packNGo command is set to
false. This setting instructs the software to include all the header files found on the include path in
the zip file (rather than the minimal header files required to build the code). For example,
packNGo(buildInfo,'minimalHeaders',false).

Package Generated Code Using the GPU Coder

This example shows how to package generated code into a zip file for relocation using the Package
option in the GPU Coder app. The example uses a Sobel edge detection application to demonstrate
this concept. By default, GPU Coder creates the zip file in the current working folder.

Prerequisites

• NVIDIA® CUDA® enabled GPU
• CUDA toolkit and drivers.
• For information on the supported versions of the compilers and libraries, see “Third-Party

Hardware”. For setting up the environment variables, see “Setting Up the Prerequisite Products”.

Sobel Edge Detection Entry-Point Function

In the Sobel edge detection algorithm, a 2-D spatial gradient operation on a grayscale image is
performed. This operation emphasizes the high spatial frequency regions which corresponds to
edges.

type sobelEdge.m

function [ magnitude ] = sobelEdge( Image )
%#codegen

%   Copyright 2017-2021 The MathWorks, Inc.
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maskX = single([-1 0 1 ; -2 0 2; -1 0 1]);
maskY = single([-1 -2 -1 ; 0 0 0 ; 1 2 1]);

coder.gpu.kernelfun();

resX = conv2(Image, maskX, 'same');
resY = conv2(Image, maskY, 'same');

magnitude = sqrt(resX.^2 + resY.^2);
thresh = magnitude < 0.4;
magnitude(thresh) = 0;

end

The Sobel edge algorithm computes the horizontal gradient (resX) and the vertical gradient (resY)
of the input image by using two orthogonal filter kernels (maskX and maskY). After the filtering
operation, the algorithm computes the gradient magnitude and applies a threhold to find the regions
of the images that are considered to be edges.

Run Sobel Edge Detection Algorithm on Test Image

The Sobel filtering algorithm operates on grayscale images. Convert the color image to an equivalent
grayscale image with normalized values (0.0 for black, 1.0 for white).

im = imread('hello.jpg');
imGray = (0.2989 * double(im(:,:,1)) + 0.5870 * double(im(:,:,2)) +...
     0.1140 * double(im(:,:,3)))/255;
imSize = size(imGray);
figure();
image(im);
title('Test Image');
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Write the matrix gray into the imputImage.csv file using the writematrix command. The Sobel
edge detection application reads in this CSV file.

writematrix(reshape(imGray,1,[]),'inputImage.csv');
imOut = sobelEdge(double(imGray));

To display the edge detected image, reformat the matrix imOut with the function repmat so that you
can pass it to the image command.

figure();
image(repmat(imOut,[1 1 3]));
title('Edge Detected Image in MATLAB');
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Create Custom Main Function for sobelEdge.m

This example uses a custom main file, main_sobel.cu and its associdated header file
main_sobel.h. This custom main file reads the input image from the inputImage.csv file, calls
the sobelEdge function in the generated sobelEdge.cu file, and saves the data from the edge
detected image into the outputMag.csv file.

Package Generated Code Using the GPU Coder App

Open the GPU Coder app. On the MATLAB Toolstrip Apps tab, under Code Generation, click the
GPU Coder app icon.

On the Select Source Files page, enter the name of the entry-point function sobelEdge.m. Click
Next to go to the Define Input Types page.

Specify that the input Image is of double data type and variable size with upper bound of 1024. To
specify variable size with an upper bound of 1024, select :1024. Click Next to go to the Check for
Run-Time Issues page.
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Check for run-time issues. In the Check for Run-Time Issues dialog box, enter code that calls
sobelEdge with double input. For example, sobelEdge(ones(648,484)). Click Check for
Issues. To check for run-time issues, the app generates and runs a MEX function. The app does not
find issues for sobelEdge. Click Next to go to the Generate Code page.

In the Generate dialog box, set the Build Type to Executable. You can also package the code
generated for Source Code, Static Library, or Dynamic Library targets. You cannot package the code
generated for MEX targets. Click More Settings.

On the Custom Code tab, under Custom C Code for Generated Files, set Additional source files
to main_sobel.cu. Click Close to go to the Generate Code page.
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Click Generate. Click Next to go to the Finish Workflow page. On the Finish Workflow page, click
Package.
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In the Package dialog box, specify the package file name and packaging type. By default, the app
derives the name of the package file from the project name. The app saves the file in the current
working folder. By default, the app packages the generated files as a single, flat folder. For this
example, use the default values, and then click Save.

This zip file contains the CUDA C++ code and header files required for relocation. It does not
contain:

• Compile flags
• Defines
• Makefiles
• Example main files, unless you configure code generation to generate and compile the example

main function.

Inspect the contents of sobelEdge_pkg.zip in your working folder to verify that it is ready for
relocation to the destination system. Depending on the zip tool that you use, you can potentially open
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and inspect the file without unpacking it. You can now relocate the resulting zip file to the desired
development environment and unpack the file.

Package Generated Code at the Command Line

To generate a CUDA executable for the sobelEdge function, create a GPU code configuration object
and run the codegen command.

cfg = coder.gpuConfig('exe');
cfg.GenerateReport = true;
cfg.CustomSource = 'main_sobel.cu';
codegen -config cfg sobelEdge -args {coder.typeof(0,[1024 1024],[1 1])}

Code generation successful: View report

To package the generated code into a zip file, load the BuildInfo object. The BuildInfo object
contains information for compiling and linking generated code, including the list of all the source and
include files and their paths.

buildInfoFile = fullfile(pwd,'codegen','exe','sobelEdge','buildInfo.mat');
load(buildInfoFile);

Create the zip file by using the packNGo function.

packNGo(buildInfo,'packType','flat','nestedZipFiles',true,...
    'minimalHeaders',false,'includeReport',false);

The packNGo function creates the sobelEdge.zip file in the current working folder. This zip file
contains the CUDA C++ code and header files required for relocation. It does not contain:

• Compile flags
• Defines
• Makefiles
• Example main files, unless you configure code generation to generate and compile the example

main function.

Inspect the contents of sobelEdge.zip in your working folder to verify that it is ready for relocation
to the destination system. Depending on the zip tool that you use, you can potentially open and
inspect the file without unpacking it. You can now relocate the resulting zip file to the desired
development environment and unpack the file.

Standalone Code Execution

When you execute the generated standalone executable, the output magnitudeData is computed
and written to a comma-separated file. Read this output back in MATLAB and use the image function
to visualize the edge detected image.

if ispc
    system('sobelEdge.exe');
else
    system('./sobelEdge');
end

imOutGPU = reshape(readmatrix('outputMag.csv'),imSize);
edgeImg = repmat(imOutGPU,[1 1 3]);
figure();
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image(edgeImg);
title('Edge Detected Image on the GPU');

Specify packNGo Options
You can specify options for the packNGo function.

To Specify
Change the structure of the file
packaging to hierarchical.

packNGo(buildInfo,'packType','hierarchical');

Change the structure of the file
packaging to hierarchical and rename
the primary zip file.

packNGo(buildInfo,'packType','hierarchical',.
..
'fileName','zippedsrcs');

Include all header files found on the
include path in the zip file (rather than
the minimal header files required to
build the code).

For GPU Coder, this option must be set
to false.

packNGo(buildInfo,'minimalHeaders',false);

Generate warnings for parse errors and
missing files.

packNGo(buildInfo,'ignoreParseError',
true,...
'ignoreFileMissing',true);
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For more information, see packNGo.

Choose a Structure for the Zip File

Before you generate and package the files, decide whether you want to package the files in a flat or
hierarchical folder structure. By default, the packNGo function packages the files in a single, flat
folder structure. This approach is the simplest and might be the optimal choice.

If Use
You are relocating files to an IDE that does not
use the generated makefile, or the code is not
dependent on the relative location of required
static files

A single, flat folder structure

The target development environment must
maintain the folder structure of the source
environment because it uses the generated
makefile, or the code depends the relative
location of files

A hierarchical structure

If you use a hierarchical structure, the packNGo function creates two levels of zip files. There is a
primary zip file, which in turn contains the following secondary zip files:

• mlrFiles.zip — files in your matlabroot folder tree
• sDirFiles.zip — files in and under your build folder where you initiated code generation
• otherFiles.zip — required files not in the matlabroot or start folder trees

Paths for the secondary zip files are relative to the root folder of the primary zip file, maintaining the
source development folder structure.

See Also
Functions
packNGo | codegen | coder.gpuConfig

More About
• “Code Generation by Using the GPU Coder App”
• “Code Generation Using the Command Line Interface”
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Getting Started with the MATLAB Coder Support Package for
NVIDIA Jetson and NVIDIA DRIVE Platforms

This example shows how to use the MATLAB® Coder™ Support Package for NVIDIA Jetson and
NVIDIA DRIVE Platforms with embedded boards from NVIDIA®. The example uses a simple vector
addition algorithm to illustrate:

• Connection to the embedded board from the MATLAB environment.
• Perform basic operations such as file transfer to and from MATLAB and executing Linux® shell

commands on the board.
• Generate C++ executable from a MATLAB function and run the executable on the ARM® CPU in

the board.
• Generate CUDA® executable from a MATLAB function and run the executable on the NVIDIA GPU

in the board.

Prerequisites

Target Board Requirements

• NVIDIA DRIVE PX2 or Jetson embedded platform.
• Ethernet crossover cable to connect the target board and host PC (if you cannot connect the

target board to a local network).
• NVIDIA CUDA toolkit and libraries installed on the board.
• Environment variables on the target for the compilers and libraries. For more information, see

“Install and Setup Prerequisites for NVIDIA Boards” (MATLAB Coder Support Package for NVIDIA
Jetson and NVIDIA DRIVE Platforms).

Development Host Requirements
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• MATLAB Coder for C++ code generation. For a tutorial, see “Get Started with MATLAB Coder”.
• GPU Coder for CUDA code generation. For a tutorial, see “Get Started with GPU Coder”.
• For CUDA code generation, NVIDIA CUDA toolkit on the host and environment variables for the

compilers and libraries. For more information, see “Third-Party Hardware” and “Setting Up the
Prerequisite Products”.

Create a Folder and Copy Relevant Files

The following line of code creates a folder in your current working folder on the host and copies all
the relevant files into this folder. If you cannot generate files in this folder, before running this
command, change your current working folder.

nvidiademo_setup('nvidia_gettingstarted');

Connect to NVIDIA Hardware

The support package uses an SSH connection over TCP/IP to execute commands while building and
running the generated code on the Jetson or DRIVE platforms. Connect the target platform to the
same network as the host computer or use an Ethernet crossover cable to connect the board directly
to the host computer. For information on how to set up and configure your board, see NVIDIA
documentation.

To communicate with the NVIDIA hardware, create a live hardware connection object by using the
drive (MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms) or jetson
(MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms) function. You
must know the host name or IP address, user name, and password of the target board to create a live
hardware connection object. For example, when connecting to the target board for the first time,
create a live object for Jetson hardware by using the command:

hwobj = jetson('jetson-tx2-name','ubuntu','ubuntu');

During the hardware live object creation, the support package performs hardware and software
checks, IO server installation, and gathers peripheral information on target. This information is
displayed in the Command Window.

Similarly, to create live object for DRIVE hardware, use the command:

hwobj = drive('drive-px2-name','ubuntu','ubuntu');

In case of a connection failure, a diagnostics error message is reported at the MATLAB command line.
If the connection has failed, the most likely cause is incorrect IP address or host name.

Run Linux Commands on NVIDIA Hardware

When a successful connection to the board is established, you can use the system method of the
board object to execute various Linux shell commands on the NVIDIA hardware from MATLAB. For
example, to list the contents of the home folder on the target board, use the command:

system(hwobj,'ls -al ~');

The hardware object provides basic file manipulation capabilities. To transfer files from the host to
the target use the putFile() method of the live hardware object. For example, to transfer the
test.txt file in the current folder to the remoteBuildDir on the target board, use the command:

putFile(hwobj,'test.txt','~/remoteBuildDir');
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To copy a file from the target board to the host computer, use the getFile() method of the
hardware object. For example,

getFile(hwobj,'~/remoteBuildDir/test.txt','.');

Generate C++ code for the ARM CPU Using MATLAB Coder

This example uses myAdd.m, a simple vector addition, as the entry-point function for code generation.

function out = myAdd(inp1,inp2) %#codegen
% Simple vector addition
% Copyright 2018-2021 The MathWorks, Inc.
out = inp1 + inp2;
end

To generate an executable that you can deploy on to an NVIDIA target, create a code configuration
object for generating an executable.

cfg = coder.config('exe');
cfg.TargetLang = 'C++';

When there are multiple live connection objects for different targets, the code generator performs a
remote build on the target board for which a recent live object was created. To choose a hardware
board for performing a remote build, use the setupCodegenContext() method of the respective
live hardware object. If only one live connection object was created, you do not need to call this
method.

hwobj.setupCodegenContext;

To create a configuration object for the DRIVE or Jetson platform and assign it to the Hardware
property of the code configuration object cfg, use the coder.hardware function. Use 'NVIDIA
Jetson' for the Jetson boards and 'NVIDIA Drive' for the DRIVE board.

cfg.Hardware = coder.hardware('NVIDIA Jetson');

To specify the folder for performing remote build process on the target board, use the BuildDir
property. If the specified build folder does not exist on the target board, then the software creates a
folder with the given name. If no value is assigned to cfg.Hardware.BuildDir, the remote build
process occurs in the last specified build folder. If there is no stored build folder value, the build
process takes place in the home folder.

cfg.Hardware.BuildDir = '~/remoteBuildDir';

The custom main.cpp file is a wrapper that calls the entry point function in the generated code. This
main file passes a vector containing the first 100 natural numbers to the entry-point function. The
main file writes the results to the myAdd.bin binary file.

cfg.CustomSource  = fullfile('main.cpp');

To generate C++ code, use the codegen function and pass the code configuration and the size of the
inputs for and myAdd.m entry-point function. After the code generation takes place on the host, the
generated files are copied over and built on the target board.

codegen('-config ',cfg,'myAdd','-args',{1:100,1:100});
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Generate CUDA Code for the Target Board Using GPU Coder

Verify GPU Environment on Target Board

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall function.

% Use 'drive' for NVIDIA DRIVE hardware
envCfg = coder.gpuEnvConfig('jetson');
envCfg.BasicCodegen = 1;
envCfg.Quiet = 1;
envCfg.HardwareObject = hwobj;
coder.checkGpuInstall(envCfg);

Generate CUDA Executable

To generate a CUDA executable that you can deploy on to an NVIDIA target, create a GPU code
configuration object for generating an executable.

cfg = coder.gpuConfig('exe');
cfg.Hardware = coder.hardware('NVIDIA Jetson');
cfg.Hardware.BuildDir = '~/remoteBuildDir';
cfg.CustomSource  = fullfile('main.cu');

Certain NVIDIA platforms such as DRIVE PX2 contain multiple GPUs. On such platforms, use the
SelectCudaDevice property in the GPU configuration object to select a specific GPU.

cfg.GpuConfig.SelectCudaDevice = 0;

codegen('-config ',cfg,'myAdd','-args',{1:100,1:100});

Run Executable on Target Board

To run the executable on the target hardware, use the runApplication() method of the hardware
object.

pid = runApplication(hwobj,'myAdd');

Alternatively, to run the executable, use the runExecutable() method of the hardware object.

exe = [hwobj.workspaceDir '/myAdd.elf'];
pid = runExecutable(hwobj,exe);

Verify Result from Target Board

Copy the output bin file myAdd.bin to the MATLAB environment on the host and compare the
computed results to those from MATLAB. The property workspaceDir contains the path to the
codegen folder on the target board.

pause(0.3); % To ensure that the executable completed the execution.
getFile(hwobj,[hwobj.workspaceDir '/myAdd.bin']);

Simulation result from the MATLAB:

simOut = myAdd(0:99,0:99);

Read the copied result binary file from target in MATLAB:

fId  = fopen('myAdd.bin','r'); tOut = fread(fId,'double');
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Find the difference between the MATLAB simulation output and the output from target board.

diff = simOut - tOut';

Display the maximum deviation between the simulation output and the output from target board.

fprintf('Maximum deviation between MATLAB Simulation output and the output on Target is: %f\n', max(diff(:)));

Cleanup

To remove the example files and return to the original folder, call the cleanup function.

cleanup

See Also
Objects
jetson | drive

More About
• “Build and Run an Executable on NVIDIA Hardware” on page 5-2
• “Build and Run an Executable on NVIDIA Hardware Using GPU Coder App” on page 5-7
• “Stop or Restart an Executable Running on NVIDIA Hardware” (MATLAB Coder Support

Package for NVIDIA Jetson and NVIDIA DRIVE Platforms)
• “Run Linux Commands on NVIDIA Hardware” (MATLAB Coder Support Package for NVIDIA

Jetson and NVIDIA DRIVE Platforms)
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Sobel Edge Detection on NVIDIA Jetson Nano Using Raspberry
Pi Camera Module V2

This example shows you how to capture and process images from a Raspberry Pi Camera Module V2
connected to the NVIDIA® Jetson Nano. The MATLAB® Coder™ Support Package for NVIDIA Jetson
and NVIDIA DRIVE Platforms allows you to capture images from the Camera Module V2 and bring
them into the MATLAB environment for processing. In this example you learn how to develop a Sobel
edge detection algorithm by using this capability.

Prerequisites

Target Board Requirements

• NVIDIA Jetson Nano embedded platform.
• Raspberry Pi Camera Module V2 connected to the CSI host port of the target.
• Ethernet crossover cable to connect the target board and host PC (if you cannot connect the

target board to a local network).
• NVIDIA CUDA toolkit installed on the board.
• V4L2 and SDL (v1.2) libraries on the board.
• GStreamer libraries on the board.
• Environment variables on the target for the compilers and libraries. For more information, see

“Install and Setup Prerequisites for NVIDIA Boards” (MATLAB Coder Support Package for NVIDIA
Jetson and NVIDIA DRIVE Platforms).

Development Host Requirements

• GPU Coder for CUDA code generation. For a tutorial, see “Get Started with GPU Coder”.
• NVIDIA CUDA toolkit on the host.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Create a Folder and Copy Relevant Files

The following line of code creates a folder in your current working folder on the host and copies all
the relevant files into this folder. If you cannot generate files in this folder, before running this
command, change your current working folder.

nvidiademo_setup('sobel_edge_detection');

Connect to NVIDIA Jetson Nano

The support package uses an SSH connection over TCP/IP to execute commands while building and
running the generated CUDA code on the Jetson Nano platforms. Connect the target platform to the
same network as the host computer or use an Ethernet crossover cable to connect the board directly
to the host computer. For information on how to set up and configure your board, see NVIDIA
documentation.

To communicate with the NVIDIA hardware, create a live hardware connection object by using the
jetson (MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms) function.
You must know the host name or IP address, user name, and password of the target board to create a
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live hardware connection object. For example, when connecting to the target board for the first time,
create a live object for Jetson hardware by using the command:

hwobj = jetson('jetson-nano-name','ubuntu','ubuntu');

During the hardware live object creation, the support package performs hardware and software
checks, IO server installation, and gathers peripheral information on target. This information is
displayed in the Command Window.

Run the getCameraList function of the hwobj object to find the available cameras. If this function
outputs an empty table, then try re-connecting the camera and execute the function again.

camlist = getCameraList(hwobj);

Verify GPU Environment on Target Board

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('jetson');
envCfg.BasicCodegen = 1;
envCfg.Quiet = 1;
envCfg.HardwareObject = hwobj;
coder.checkGpuInstall(envCfg);

Create a Camera Object

Create a camera object by using the name from the getCameraList function. For example, if the
camera is named vi-output, imx219 6-0010, use:

camObj = camera(hwobj,"vi-output, imx219 6-0010",[640 480]);

camObj is a handle to a camera object. To display the images captured from the Camera Module V2
in MATLAB, use these commands:

for i = 1:100
    img = snapshot(camObj);
    imagesc(img);
    drawnow;
end

This camera object captures RGB and 3-channel grayscale images.

Create a Display Object

To create a display object, use the imageDisplay function. This object is a system object that uses
imshow function to display the images in MATLAB.

dispObj = imageDisplay(hwobj);
img = snapshot(camObj);
image(dispObj,img);

Sobel Edge Detection Algorithm

The Sobel edge detection algorithm is a 2-D spatial gradient operation on a grayscale image. This
operation emphasizes the high spatial frequency regions pf the image that corresponds to edges.

Calculate Gradients
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Find horizontal gradient(h) and vertical gradient (v) of the input image with respective Sobel kernels.
These two Sobel kernels are orthogonal to each other. Before processing live image data from the
camera, test the algorithm on a sample image.

kern = [1 2 1; 0 0 0; -1 -2 -1];
img = imread('peppers.png');

imagesc(img);

h = conv2(img(:,:,2),kern,'same');
v = conv2(img(:,:,2),kern','same');

Calculate Gradient Magnitude

Find the gradient magnitude from the horizontal and vertical gradients (h and v).

e = sqrt(h.*h + v.*v);

Threshold the Edge Image

Threshold the image to find the regions of image that are edges.

edgeImg = uint8((e > 100) * 240);

imagesc(edgeImg);
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Run Sobel Edge Detection Algorithm on Live Data

Create a MATLAB entry-point function, sobelEdgeDetectionAlg.m, out of the MATLAB code
developed in the previous sections of this example. View the code in MATLAB editor.

edit('sobelEdgeDetectionAlg.m');

The function sobelEdgeDetectionAlg takes image and threshold input for edge detection and
returns the results of edge detection algorithm. Call this function on the images captured from inside
a loop. You can vary the threshold variable thresh to get a proper edge image. This way you can use
the camera access capability of the support package to tune the algorithm suitable for the specified
camera.

for i = 1:200
    img = snapshot(camObj);
    thresh = 100;
    edgeImage = sobelEdgeDetectionAlg(img, thresh);
    image(dispObj,edgeImage);
end

To deploy this example as a standalone application on the target board, see “Deploy and Run Sobel
Edge Detection with I/O on NVIDIA Jetson Nano” (MATLAB Coder Support Package for NVIDIA
Jetson and NVIDIA DRIVE Platforms).

Cleanup

To remove the example files and return to the original folder, call the cleanup function.
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cleanup

See Also
Objects
jetson | drive

More About
• “Build and Run an Executable on NVIDIA Hardware” on page 5-2
• “Build and Run an Executable on NVIDIA Hardware Using GPU Coder App” on page 5-7
• “Stop or Restart an Executable Running on NVIDIA Hardware” (MATLAB Coder Support

Package for NVIDIA Jetson and NVIDIA DRIVE Platforms)
• “Run Linux Commands on NVIDIA Hardware” (MATLAB Coder Support Package for NVIDIA

Jetson and NVIDIA DRIVE Platforms)

 Sobel Edge Detection on NVIDIA Jetson Nano Using Raspberry Pi Camera Module V2

5-33



Semantic Segmentation on NVIDIA DRIVE

This example shows how to generate and deploy a CUDA® executable for an image segmentation
application that uses deep learning. It uses the MATLAB® Coder™ Support Package for NVIDIA
Jetson and NVIDIA DRIVE Platforms to deploy the executable on the NVIDIA DRIVE™ platform. This
example performs code generation on the host computer and builds the generated code on the target
platform by using remote build capability of the support package. For more information, see “Code
Generation for Semantic Segmentation Network” on page 4-152.

Prerequisites

Target Board Requirements

• NVIDIA DRIVE PX2 embedded platform.
• Ethernet crossover cable to connect the target board and host PC (if you cannot connect the

target board to a local network).
• NVIDIA CUDA toolkit installed on the board.
• NVIDIA cuDNN library (v5 and above) on the target.
• OpenCV library on the target for reading and displaying images.
• Environment variables on the target for the compilers and libraries. For more information, see

“Install and Setup Prerequisites for NVIDIA Boards” (MATLAB Coder Support Package for NVIDIA
Jetson and NVIDIA DRIVE Platforms).

Development Host Requirements

• GPU Coder for CUDA code generation. For a tutorial, see “Get Started with GPU Coder”.
• Deep Learning Toolbox™ to use a DAG network object.
• GPU Coder Interface for Deep Learning Libraries support package. To install this support

package, use the MATLAB® Add-On Explorer.
• NVIDIA CUDA toolkit on the host.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” and “Setting Up the Prerequisite Products”.

Create a Folder and Copy Relevant Files

The following line of code creates a folder in your current working folder on the host and copies all
the relevant files into this folder. If you cannot generate files in this folder, before running this
command, change your current working folder.

nvidiademo_setup('segnet_deploy');

Connect to the NVIDIA Hardware

The support package uses an SSH connection over TCP/IP to execute commands while building and
running the generated CUDA code on the DRIVE platforms. Connect the target platform to the same
network as the host computer or use an Ethernet crossover cable to connect the board directly to the
host computer. For information on how to set up and configure your board, see NVIDIA
documentation.

To communicate with the NVIDIA hardware, create a live hardware connection object by using the
drive (MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms) function.
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You must know the host name or IP address, user name, and password of the target board to create a
live hardware connection object. For example, when connecting to the target board for the first time,
create a live object for Drive hardware by using the command:

hwobj = drive('drive-px2-name','ubuntu','ubuntu');

During the hardware live object creation, the support package performs hardware and software
checks, IO server installation, and gathers peripheral information on target. This information is
displayed in the Command Window.

In case of a connection failure, a diagnostics error message is reported at the MATLAB command line.
If the connection has failed, the most likely cause is incorrect IP address or host name.

Verify GPU Environment on Target Board

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('drive');
envCfg.BasicCodegen = 1;
envCfg.Quiet = 1;
envCfg.HardwareObject = hwobj;
coder.checkGpuInstall(envCfg);

Get Pretrained SegNet DAG Network Object

net = getSegNet();

Downloading pre-trained SegNet (107 MB)...

The DAG network contains 91 layers including convolution, batch normalization, pooling, unpooling,
and the pixel classification output layers. To see all the layers of the network, use the
analyzeNetwork function.

Generate CUDA Code for the Target Board Using GPU Coder

This example uses segnet_predict.m file as the entry-point function for code generation. To
generate a CUDA executable that you can deploy on to an NVIDIA target, create a GPU code
configuration object for generating an executable.

cfg = coder.gpuConfig('exe');

When there are multiple live connection objects for different targets, the code generator performs a
remote build on the target board for which a recent live object was created. To choose a hardware
board for performing a remote build, use the setupCodegenContext() method of the respective
live hardware object. If only one live connection object was created, you do not need to call this
method.

hwobj.setupCodegenContext;

To create a configuration object for the DRIVE platform and assign it to the Hardware property of the
code configuration object cfg, use the coder.hardware function.

cfg.Hardware = coder.hardware('NVIDIA Drive');

To specify the folder for performing remote build process on the target board, use the BuildDir
property. If the specified build folder does not exist on the target board, then the software creates a
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folder with the given name. If no value is assigned to cfg.Hardware.BuildDir, the remote build
process occurs in the last specified build folder. If there is no stored build folder value, the build
process takes place in the home folder.

cfg.Hardware.BuildDir = '~/remoteBuildDir';

On NVIDIA platforms such as DRIVE PX2 that contain multiple GPUs, use the SelectCudaDevice
property in the GPU configuration object to select a specific GPU.

cfg.GpuConfig.SelectCudaDevice = 0;

The custom main.cu file is a wrapper that calls the predict function in the generated code.
Postprocessing steps are added in the main file by using OpenCV interfaces. The output of SegNet
prediction is an 11-channel image. The eleven channels here represent the prediction scores of
eleven different classes. In postprocessing, each pixel is assigned a class label that has the maximum
score among the 11 channels. Each class is associated with a unique color for visualization. The final
output is shown by using the OpenCV imshow function.

cfg.CustomSource  = fullfile('main.cu');

In this example, code generation uses an image as the input to the network. However, the custom
main file is coded to take video as input and perform a SegNet prediction for each frame in the video
sequence. The compiler and linker flags required to build the executable with OpenCV library are
updated in the buildinfo section in the |segnet_predict.m|file.

Generate sample image input for code generation.

img = imread('peppers.png');
img = imresize(img,[360 480]);

To generate CUDA code, use the codegen function and pass the GPU code configuration and the size
of the inputs for and segnet_predict.m entry-point function. After the code generation takes place
on the host, the generated files are copied over and built on the target board.

codegen('-config ', cfg, 'segnet_predict', '-args', {img},'-report');

Run Executable on Target Board

Copy the input test video to the target workspace folder, using the workspaceDir property of the
hardware object. This property contains the path to the codegen folder on the target board.

hwobj.putFile('CamVid.avi', hwobj.workspaceDir);

To launch the executable on the target hardware, use the runApplication() method of the
hardware object.

hwobj.runApplication('segnet_predict','CamVid.avi');

The segmented image output is displayed in a window on the monitor that is connected to the target
board.
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You can stop the running executable on the target board from the MATLAB environment on the host
by using the killApplication() method of the hardware object. This method uses the name of the
application and not the name of the executable.

hwobj.killApplication('segnet_predict');

Cleanup

To remove the example files and return to the original folder, call the cleanup function.

cleanup

See Also
Objects
jetson | drive

More About
• “Build and Run an Executable on NVIDIA Hardware” on page 5-2
• “Build and Run an Executable on NVIDIA Hardware Using GPU Coder App” on page 5-7
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• “Stop or Restart an Executable Running on NVIDIA Hardware” (MATLAB Coder Support
Package for NVIDIA Jetson and NVIDIA DRIVE Platforms)

• “Run Linux Commands on NVIDIA Hardware” (MATLAB Coder Support Package for NVIDIA
Jetson and NVIDIA DRIVE Platforms)
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Top-Hat Filtering to Remove Uneven Background Illumination
on NVIDIA Jetson TX2 Developer Kit

This example shows how to deploy Image Processing Toolbox™ algorithms to NVIDIA® Jetson TX2
board using the GPU Coder™ Support Package for NVIDIA GPUs. The imtophat (Image Processing
Toolbox) function that performs morphological top-hat filtering on a grayscale image is used as an
example to demonstrate this concept. Top-hat filtering computes the morphological opening of the
image (using imopen (Image Processing Toolbox)) and then subtracts the result from the original
image. The generated CUDA® code uses shared memory to speed up the operations on the GPU.

Prerequisites

Target Board Requirements *

• NVIDIA Jetson TX2 embedded platform.
• Ethernet crossover cable to connect the target board and host PC (if the target board cannot be

connected to a local network).
• NVIDIA CUDA toolkit installed on the board.
• OpenCV library on the target for reading and displaying images and video.
• Environment variables on the target for the compilers and libraries. For information on the

supported versions of the compilers and libraries and their setup, see “Install and Setup
Prerequisites for NVIDIA Boards” (MATLAB Coder Support Package for NVIDIA Jetson and
NVIDIA DRIVE Platforms) for NVIDIA boards.

Development Host Requirements

• CUDA enabled NVIDIA GPU.
• NVIDIA CUDA toolkit and driver.
• Environment variables for the compilers and libraries. For information on the supported versions

of the compilers and libraries, see “Third-Party Hardware”. For setting up the environment
variables, see “Setting Up the Prerequisite Products”.

Verify NVIDIA Support Package Installation on Host

Use the checkHardwareSupportPackageInstall function to verify that the host system is
compatible to run this example.

checkHardwareSupportPackageInstall();

Connect to the NVIDIA Hardware

The GPU Coder Support Package for NVIDIA GPUs uses an SSH connection over TCP/IP to execute
commands while building and running the generated CUDA code on the Jetson platform. You must
therefore connect the target platform to the same network as the host computer or use an Ethernet
crossover cable to connect the board directly to the host computer. Refer to the NVIDIA
documentation on how to set up and configure your board.

To communicate with the NVIDIA hardware, you must create a live hardware connection object by
using the jetson (MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms)
function. You must know the host name or IP address, username, and password of the target board to
create a live hardware connection object.
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hwobj= jetson('host-name','username','password');

When there are multiple live connection objects for different targets, the code generator performs
remote build on the target for which a recent live object was created. To choose a hardware board for
performing remote build, use the setupCodegenContext() method of the respective live hardware
object. If only one live connection object was created, it is not necessary to call this method.

hwobj.setupCodegenContext;

Verify GPU Environment

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('jetson');
envCfg.BasicCodegen = 1;
envCfg.Quiet = 1;
envCfg.HardwareObject = hwobj;
coder.checkGpuInstall(envCfg);

The imtophat Entry-Point Function

The imtophatDemo_gpu.m calls imtophat internally. The imtophat function performs
morphological opening on the image using the imopen (Image Processing Toolbox) function. The
result of the image is subtracted from the original image. The imopen operation is basically imerode
(Image Processing Toolbox) operation followed by imdilate (Image Processing Toolbox).

This example is shown on an input grayscale image.

original = imread('rice.png');
imshow(original),title('Input to Top-Hat Filtering');
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Create a disc-shaped structuring element with a radius of 12. Neighbourhood, Nhood of this
structuring element is passed as an input argument for the imtophat function.

se = strel('disk',12);
Nhood = se.Neighborhood;
type imtophatDemo_gpu

function [out]  = imtophatDemo_gpu(img,Nhood,ocvFlag) %#codegen

%   Copyright 2019-2021 The MathWorks, Inc.   

coder.gpu.kernelfun;

% This example uses OpenCV for reading an image 
% and displaying output image. Update buildinfo to link with 
% OpenCV library available on target.
if ocvFlag 
    % OpenCV 4 flags
    opencv_compile_flags = '`pkg-config --cflags --libs opencv4`';
    opencv_link_flags = '`pkg-config --libs opencv4`';
else 
    % OpenCV 3 flags
    opencv_compile_flags = '`pkg-config --cflags --libs opencv`';
    opencv_link_flags = '`pkg-config --libs opencv`';
end

coder.updateBuildInfo('addLinkFlags',opencv_link_flags);
coder.updateBuildInfo('addCompileFlags',opencv_compile_flags);

out = imtophat(img,Nhood);

end

Get OpenCV Version on the Target

Use the pkg-config helper tool to query if OpenCV 4.x is installed on the target board. This example
uses the information to update build information to link with the appropriate OpenCV library
available on target.

try
    OpenCVver = strtrim(system(hwobj,'pkg-config --modversion opencv4'));
    isOpenCV4 = 1;
catch
    OpenCVver = strtrim(system(hwobj,'pkg-config --modversion opencv'));
    isOpenCV4 = 0;
end

Generate and Deploy CUDA Code on the Target

This example uses imtophatDemo_gpu.m as the entry-point function for code generation. To
generate a CUDA executable, create a GPU code configuration object.

cfg = coder.gpuConfig('exe');

Use the coder.hardware function to create a configuration object for the Jetson platform and assign
it to the Hardware property of the GPU code configuration object cfg.

cfg.Hardware = coder.hardware('NVIDIA Jetson');
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The custom main_tophat.cu file is a wrapper that calls the imtophatDemo_gpu entry-point
function in the generated code. Post processing steps are added in the main file using OpenCV
interfaces. Build Flags for OpenCV libraries are included in imtophatDemo_gpu.m entry-point
function.

cfg.CustomSource = fullfile('main_tophat.cu');

To generate CUDA code, use the codegen function and pass the GPU code configuration object along
with input arguments. In this step, CUDA code is generated on the host, generated files are copied
over and built on the target in the workspace directory. The workspace directory is available as a
property, workspaceDir in the hardware object, hwobj.

codegen -args {original,coder.Constant(Nhood),coder.Constant(isOpenCV4)} -config cfg imtophatDemo_gpu -report

Run the Application on the Target

This application takes a grayscale image as input. Copy the rice.png file from host to the target
device by using the putFile command.

imgLoc = which('rice.png');
hwobj.putFile(imgLoc,hwobj.workspaceDir);

Use the runApplication method of the hardware object to launch the application on the target
hardware.

hwobj.runApplication('imtophatDemo_gpu','rice.png');

Top-Hat Filtered Image on Jetson TX2

Kill the Application

Use the killApplication method of the hardware object to kill the running application on the
target.

hwobj.killApplication('imtophatDemo_gpu');

See Also
Objects
jetson | drive
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More About
• “Build and Run an Executable on NVIDIA Hardware” on page 5-2
• “Build and Run an Executable on NVIDIA Hardware Using GPU Coder App” on page 5-7
• “Stop or Restart an Executable Running on NVIDIA Hardware” (MATLAB Coder Support

Package for NVIDIA Jetson and NVIDIA DRIVE Platforms)
• “Run Linux Commands on NVIDIA Hardware” (MATLAB Coder Support Package for NVIDIA

Jetson and NVIDIA DRIVE Platforms)
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Deployment and Classification of Webcam Images on NVIDIA
Jetson TX2 Platform

This example shows how to generate CUDA® code from a DAGNetwork object and deploy the
generated code onto the NVIDIA® Jetson® TX2 board using the GPU Coder™ Support Package for
NVIDIA GPUs. This example uses the resnet50 deep learning network to classify images from a USB
webcam video stream.

Prerequisites

Target Board Requirements

• NVIDIA Jetson Tegra TX2 embedded platform.
• Ethernet crossover cable to connect the target board and host PC (if the target board cannot be

connected to a local network).
• USB camera to connect to the TX2.
• NVIDIA CUDA toolkit installed on the target board.
• NVIDIA cuDNN library on the target board.
• OpenCV library on the target for reading and displaying images/video.
• Environment variables on the target for the compilers and libraries. For information on the

supported versions of the compilers and libraries and their setup, see “Install and Setup
Prerequisites for NVIDIA Boards” (MATLAB Coder Support Package for NVIDIA Jetson and
NVIDIA DRIVE Platforms) for NVIDIA boards.

Development Host Requirements

• NVIDIA CUDA toolkit and driver.
• Environment variables for the compilers and libraries. For information on the supported versions

of the compilers and libraries, see “Third-Party Hardware”. For setting up the environment
variables, see “Setting Up the Prerequisite Products”.

Verify NVIDIA Support Package Installation on Host

Use the checkHardwareSupportPackageInstall function to verify that the host system is
compatible to run this example.

checkHardwareSupportPackageInstall();

Connect to the NVIDIA Hardware

The GPU Coder Support Package for NVIDIA GPUs uses an SSH connection over TCP/IP to execute
commands while building and running the generated CUDA code on the Jetson platform. You must
therefore connect the target platform to the same network as the host computer or use an Ethernet
crossover cable to connect the board directly to the host computer. Refer to the NVIDIA
documentation on how to set up and configure your board.

To communicate with the NVIDIA hardware, you must create a live hardware connection object by
using the jetson (MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms)
function. You must know the host name or IP address, username, and password of the target board to
create a live hardware connection object. For example, when connecting to the target board for the
first time, create a live object for Jetson hardware by using the command:
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hwobj= jetson('host-name','username','password');

The jetson object reuses these settings from the most recent successful connection to the Jetson
hardware. This example establishes an SSH connection to the Jetson hardware using the settings
stored in memory.

hwobj = jetson;

Checking for CUDA availability on the Target...
Checking for 'nvcc' in the target system path...
Checking for cuDNN library availability on the Target...
Checking for TensorRT library availability on the Target...
Checking for prerequisite libraries is complete.
Gathering hardware details...
Checking for third-party library availability on the Target...
Gathering hardware details is complete.
 Board name              : NVIDIA Jetson TX2
 CUDA Version            : 10.0
 cuDNN Version           : 7.6
 TensorRT Version        : 6.0
 GStreamer Version       : 1.14.5
 V4L2 Version            : 1.14.2-1
 SDL Version             : 1.2
 OpenCV Version          : 4.1.1
 Available Webcams       :  
 Available GPUs          : NVIDIA Tegra X2
 Available Digital Pins  : 7  11  12  13  15  16  18  19  21  22  23  24  29  31  32  33  35  36  37  38  40

In case of a connection failure, a diagnostics error message is reported on the MATLAB command
line. If the connection has failed, the most likely cause is incorrect IP address or hostname.

When there are multiple live connection objects for different targets, the code generator performs
remote build on the target for which a recent live object was created. To choose a hardware board for
performing remote build, use the setupCodegenContext() method of the respective live hardware
object. If only one live connection object was created, it is not necessary to call this method.

hwobj.setupCodegenContext;

Verify GPU Environment on the Target

Use the coder.checkGpuInstall function to verify that the compilers and libraries necessary for
running this example are set up correctly.

envCfg = coder.gpuEnvConfig('jetson');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
envCfg.HardwareObject = hwobj;
coder.checkGpuInstall(envCfg);

ResNet-50 Entry-Point Function

The resnet50_wrapper.m entry-point function uses a pre-trained ResNet-50 Network to classify
images. ResNet-50 is a DAG Network trained on more than a million images from the ImageNet
database. The output contains the categorical scores of each class the image belongs to.

type resnet50_wrapper
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function out = resnet50_wrapper(im,ocvFlag) %#codegen
% Wrapper function to call ResNet50 predict function.

%   Copyright 2019-2021 The MathWorks, Inc.

% This example uses OpenCV for reading frames from a web camera and
% displaying output image. Update buildinfo to link with OpenCV library
% available on target.
if ocvFlag
    opencv_link_flags = '`pkg-config --libs opencv4`';
    opencv_compile_flags = '`pkg-config --cflags  opencv4`';
else
    opencv_link_flags = '`pkg-config --libs opencv`';
    opencv_compile_flags = '`pkg-config --cflags --libs opencv`';
end

coder.updateBuildInfo('addLinkFlags',opencv_link_flags);
coder.updateBuildInfo('addCompileFlags',opencv_compile_flags);

% To avoid multiple loads of the network for each run, we use persistent
% rnet
persistent rnet;
if isempty(rnet)
    rnet = resnet50();
end
out = rnet.predict(im);

end

Get OpenCV Version on the Target

Use the pkg-config helper tool to query if OpenCV 4.x is installed on the target board. This example
uses the information to update build information to link with the appropriate OpenCV library
available on target.

isOpenCV4 = 1;
ocvVersion = hwobj.OpenCVVersion();
if (str2double(ocvVersion(1)) <= 3)
   isOpenCV4 = 0;
end

Generate and Deploy CUDA Code on the Target

To generate a CUDA executable that can be deployed on to an NVIDIA target, create a GPU coder
configuration object for generating an executable.

cfg = coder.gpuConfig('exe');

Use the coder.hardware function to create a configuration object for the Jetson platform and assign
it to the Hardware property of the GPU code configuration object cfg.

cfg.Hardware = coder.hardware('NVIDIA Jetson');

Set Deep Learning Configuration to 'cudnn' or tensorrt'

cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');

In this example, code generation is done using image as an input. However, webcam stream is fed a
input to the executable after deployment.
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Sample image input for code generation

im = single(imread('peppers.png'));
im = imresize(im,[224,224]);

The custom main file is coded to take video as input and classifies each frame in the video sequence.
The custom main_resnet50.cu file is a wrapper that calls the predict function in the generated
code. Post processing steps such as displaying output on the input frame are added in the main file
using OpenCV interfaces.

cfg.CustomSource = fullfile('main_resnet50.h');
cfg.CustomSource = fullfile('main_resnet50.cu');

To generate CUDA code and deploy it onto target, use the codegen function and pass the GPU code
configuration object. After the code generation takes place on the host, the generated files are copied
over and built on the target in the workspace directory.

codegen -config cfg -args {im,coder.Constant(isOpenCV4)} resnet50_wrapper -report

Code generation successful: View report

Run the Application on the Target

Copy the synsetWords_resnet50 text file from host computer to the target device by using the
putFile command.

putFile(hwobj,'synsetWords_resnet50.txt',hwobj.workspaceDir);

Use the runApplication method of the hardware object to launch the application on the target
hardware. The application will be located in the workspace directory.

runApplication(hwobj,'resnet50_wrapper');

If the webcam window is not visible on the target board, it may have been directed to the incorrect
display. Use the setDisplayEnvironment function to set the display environment used for
redirecting the display on the target. The value must be the same as the $DISPLAY environment
value set on the board.
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Resnet Classification Output on Jetson TX2

Kill the Application

Use the killApplication method of the hardware object to kill the running application on the
target.

killApplication(hwobj,'resnet50_wrapper');

See Also
Objects
jetson | drive

More About
• “Build and Run an Executable on NVIDIA Hardware” on page 5-2
• “Build and Run an Executable on NVIDIA Hardware Using GPU Coder App” on page 5-7
• “Stop or Restart an Executable Running on NVIDIA Hardware” (MATLAB Coder Support

Package for NVIDIA Jetson and NVIDIA DRIVE Platforms)
• “Run Linux Commands on NVIDIA Hardware” (MATLAB Coder Support Package for NVIDIA

Jetson and NVIDIA DRIVE Platforms)
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Ground Plane Segmentation and Obstacle Detection on NVIDIA
Jetson Xavier™ NX Embedded platform

This example shows ground plane segmentation of 3-D lidar data from a vehicle on NVIDIA®
embedded platforms to find nearby obstacles. The example uses ground plane segmentation and
obstacle detection application to illustrate:

• C++ and CUDA® code generation for the ground plane segmentation and obstacle detection
algorithm by using MATLAB® Coder™ and GPU Coder™.

• Verify behavior of the generated code on the target platform by using processor-in-the-loop (PIL)
simulation.

• Compare of the performance of the application on the CPU (C++) and the GPU (CUDA).

Third-Party Prerequisites

Target Board Requirements

• NVIDIA Jetson Xavier™ NX Embedded platform.
• NVIDIA CUDA toolkit installed on the board.
• Environment variables on the target board for the compilers and libraries. For more information,

see “Install and Setup Prerequisites for NVIDIA Boards” (MATLAB Coder Support Package for
NVIDIA Jetson and NVIDIA DRIVE Platforms).

Development Host Requirements

• NVIDIA CUDA toolkit installed on the host.
• Environment variables for the compilers and libraries. For information on the supported versions

of the compilers and libraries, see “Third-Party Hardware”. For setting up the environment
variables, see “Setting Up the Prerequisite Products”.

Configure and Verify NVIDIA Target Platform

Connect to NVIDIA Hardware

The MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE™ Platforms uses SSH
connection over TCP/IP to execute commands while building and running the generated code on the
Jetson platforms. Connect the target platform to the same network as the host computer.

To communicate with the NVIDIA hardware, create a live hardware connection object by using the
jetson (MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms) function.
This example uses the device address, user name, and password settings from the most recent
successful connection to the Jetson hardware.

hwobj = jetson;

Configure PIL Simulation

This example uses processor-in-the-loop (PIL) simulation to test the generated C++ and CUDA code
on the Jetson board. Because the input data transfer and algorithm computations consumes time,
change the default higher PIL timeout value to prevent time-out errors.

setPILTimeout(hwobj,100);
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Verify GPU Environment

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('jetson');
envCfg.BasicCodegen = 1;
envCfg.Quiet = 1;
envCfg.HardwareObject = hwobj;
coder.checkGpuInstall(envCfg);

Configure Code Generation Parameters

To generate a PIL executable that runs on the ARM® CPU of the Jetson board, create a
coder.EmbeddedCodeConfig object for a static library.

cfgCpu = coder.config('lib');

Set the target language for the generated code to C++ and enable PIL execution in the code
configuration object. Then, enable execution-time profiling during PIL execution. Execution-time
profiling generates metrics for tasks and functions in the generated code. For more information, see
“Create Execution-Time Profile for Generated Code” (Embedded Coder). Finally, create a
coder.hardware object for the Jetson platform and assign it to the Hardware property of the code
configuration object.

cfgCpu.TargetLang = 'C++';
cfgCpu.VerificationMode = 'PIL';
cfgCpu.CodeExecutionProfiling = true;
cfgCpu.Hardware = coder.hardware('NVIDIA Jetson');

Similarly, create configuration parameters for the CUDA GPU on the Jetson board by using
coder.gpuConfig.

cfgGpu = coder.gpuConfig('lib');
cfgGpu.VerificationMode = 'PIL';
cfgGpu.CodeExecutionProfiling = true;
cfgGpu.Hardware = coder.hardware('NVIDIA Jetson');

The segmentGroundAndObstacles Entry-Point Function

The segmentGroundAndObstacles entry-point function segments points belonging to the ground
plane, the ego vehicle, and nearby obstacles from the input point cloud locations. The following
diagram illustrates the algorithm implemented in the entry-point function. For more information, see
“Ground Plane and Obstacle Detection Using Lidar” (Automated Driving Toolbox).
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type segmentGroundAndObstacles

Generate and Run Executables on the Target

The point cloud data from the lidar sensor is of size 32-by-1100-by-3. Due to signal misses and noise,
a few points may be dropped from this point cloud data. So, the second dimension might vary with an
upper bound of 1100. Create the input type for the entry-point function
segmentGroundAndObstacles with varying dimensions for the second argument using the
coder.typeof function.

codegenArgs = {coder.typeof(single(0),[32,1100,3],[0,1,0])};

Generate and Run C++ Executable

Generate C++ code with the CPU code configuration object cfgCpu.

codegen -config cfgCpu -args codegenArgs segmentGroundAndObstacles -report

The obstacleDetectionWrapper is an execution wrapper function that processess the streaming
lidar input data frame-by-frame, calls the PIL executable, and displays the 3-D point cloud with
segmenting points belonging to the ground plane, the ego vehicle, and nearby obstacles. The lidar
data used in this example was recorded using a Velodyne HDL32E sensor mounted on a vehicle. For
an explanation of the processing performed by the obstacleDetectionWrapper function, see
“Ground Plane and Obstacle Detection Using Lidar” (Automated Driving Toolbox).

obstacleDetectionWrapper();
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Execution Profile of the C++ Executable

Clear the PIL executable and collect the execution time profile by using the
getCoderExecutionProfile function.

clear segmentGroundAndObstacles_pil;
cpuExecutionProfile = getCoderExecutionProfile('segmentGroundAndObstacles');

Generate and Run CUDA Executable

Generate CUDA code with the GPU code configuration object cfgGpu.

codegen -config cfgGpu -args codegenArgs segmentGroundAndObstacles -report

To maximize the GPU performance, use the jetson_clocks.sh script on the board. For more
information, see NVIDIA Xavier - Maximizing Performance (RidgeRun wiki).

ClockFileStatus = system(hwobj, 'test -f l4t_dfs.conf && echo "1" || echo "0"');
if ~str2double(ClockFileStatus)
    system(hwobj,'echo "ubuntu" | sudo -S jetson_clocks --store');
end
system(hwobj,'echo "ubuntu" | sudo -S jetson_clocks');
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Use the obstacleDetectionWrapper to process the streaming lidar input data, calls the PIL
executable, and display the 3-D point cloud with segmenting points belonging to the ground plane,
the ego vehicle, and nearby obstacles.

obstacleDetectionWrapper();

Execution Profile of the CUDA Executable

Disable Jetson clock settings, clear the PIL executable and collect the execution time profile by using
the getCoderExecutionProfile function.

system(hwobj,'echo "ubuntu" | sudo -S jetson_clocks --restore');
clear segmentGroundAndObstacles_pil;
gpuExecutionProfile = getCoderExecutionProfile('segmentGroundAndObstacles');

Analysis of CPU and GPU Execution Profiles

Get the per frame execution times of CPU and GPU from their execution profiles by using the
ExecutionTimeInSeconds property.

[~,cpuExecTimePerFrame,~] = cpuExecutionProfile.Sections.ExecutionTimeInSeconds;
[~,gpuExecTimePerFrame,~] = gpuExecutionProfile.Sections.ExecutionTimeInSeconds;
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To plot the per frame execution times use the code mentioned below:

figure;
% Plot CPU execution times.
plot(cpuExecTimePerFrame(2:end)*1000,'r');
hold on;
% Plot GPU execution times.
plot(gpuExecTimePerFrame(2:end)*1000,'b');
grid on;
% Set the title, legend and labels.
title('CPU vs GPU Per-frame Execution times (in ms)');
legend('GPU Timings', 'CPU Timings');
axis([0,1240,0,40]);
xlabel('Frame Number');
ylabel('Execution Time (in ms)');

Supporting Functions

obstacleDetectionWrapper processess the lidar data, calls the PIL executable, and visualize the
results. For an explanation of the processing performed by the obstacleDetectionWrapper
function, see “Ground Plane and Obstacle Detection Using Lidar” (Automated Driving Toolbox).

function obstacleDetectionWrapper()
%OBSTACLEDETECTIONWRAPPER process lidar data and visualize results
%   The OBSTACLEDETECTIONWRAPPER is an execution wrapper function that
%   processess the streaming lidar input data frame-by-frame, calls the PIL
%   executable, and displays the 3-D point cloud with segmenting points
%   belonging to the ground plane, the ego vehicle, and nearby obstacles.

fileName    = 'lidarData_ConstructionRoad.pcap';
deviceModel = 'HDL32E';
veloReader = velodyneFileReader(fileName, deviceModel);

% Setup Streaming Point Cloud Display
xlimits = [-25 45];   % Limits of point cloud display, meters
ylimits = [-25 45];
zlimits = [-20 20];

% Create a pcplayer
lidarViewer = pcplayer(xlimits, ylimits, zlimits);
xlabel(lidarViewer.Axes, 'X (m)')
ylabel(lidarViewer.Axes, 'Y (m)')
zlabel(lidarViewer.Axes, 'Z (m)')

% Set the colormap for labeling the ground plane, ego vehicle, and nearby
% obstacles.
colorLabels = [...
    0      0.4470 0.7410; ... % Unlabeled points, specified as [R,G,B]
    0.4660 0.6740 0.1880; ... % Ground points
    0.9290 0.6940 0.1250; ... % Ego points
    0.6350 0.0780 0.1840];    % Obstacle points

% Define indices for each label
colors.Unlabeled = 1;
colors.Ground    = 2;
colors.Ego       = 3;
colors.Obstacle  = 4;
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% Set the colormap
colormap(lidarViewer.Axes, colorLabels)

% Stop processing the frame after specified time.
stopTime = veloReader.EndTime;

i = 1;
isPlayerOpen = true;
while hasFrame(veloReader) && veloReader.CurrentTime < stopTime && isPlayerOpen

    % Grab the next lidar scan
    ptCloud = readFrame(veloReader);

    % Segment points belonging to the ego vehicle
    [egoPoints,groundPoints,obstaclePoints] = segmentGroundAndObstacles_pil(ptCloud.Location);

    i = i+1;
    closePlayer = ~hasFrame(veloReader);

    % Update lidar display
    points = struct('EgoPoints',egoPoints, 'GroundPoints',groundPoints, ...
        'ObstaclePoints',obstaclePoints);
    isPlayerOpen = helperUpdateView(lidarViewer, ptCloud, points, colors, closePlayer);
end
snapnow
end

helperUpdateView updates the streaming point cloud display with the latest point cloud and
associated color labels.

function isPlayerOpen = helperUpdateView(lidarViewer,ptCloud,points,colors,closePlayer)
%HELPERUPDATEVIEW update streaming point cloud display
%   isPlayerOpen =
%   HELPERUPDATEVIEW(lidarViewer,ptCloud,points,colors,closePlayers)
%   updates the pcplayer object specified in lidarViewer with a new point
%   cloud ptCloud. Points specified in the struct points are colored
%   according to the colormap of lidarViewer using the labels specified by
%   the struct colors. closePlayer is a flag indicating whether to close
%   the lidarViewer.

if closePlayer
    hide(lidarViewer);
    isPlayerOpen = false;
    return;
end

scanSize = size(ptCloud.Location);
scanSize = scanSize(1:2);

% Initialize colormap
colormapValues = ones(scanSize, 'like', ptCloud.Location) * colors.Unlabeled;

if isfield(points, 'GroundPoints')
    colormapValues(points.GroundPoints) = colors.Ground;
end

if isfield(points, 'EgoPoints')
    colormapValues(points.EgoPoints) = colors.Ego;
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end

if isfield(points, 'ObstaclePoints')
    colormapValues(points.ObstaclePoints) = colors.Obstacle;
end

% Update view
view(lidarViewer, ptCloud.Location, colormapValues)

% Check if player is open
isPlayerOpen = isOpen(lidarViewer);

end

See Also
Objects
jetson | drive

More About
• “Build and Run an Executable on NVIDIA Hardware” on page 5-2
• “Build and Run an Executable on NVIDIA Hardware Using GPU Coder App” on page 5-7
• “Stop or Restart an Executable Running on NVIDIA Hardware” (MATLAB Coder Support

Package for NVIDIA Jetson and NVIDIA DRIVE Platforms)
• “Run Linux Commands on NVIDIA Hardware” (MATLAB Coder Support Package for NVIDIA

Jetson and NVIDIA DRIVE Platforms)
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Deploy Signal Classifier on NVIDIA Jetson Using Wavelet
Analysis and Deep Learning

This example shows how to generate and deploy a CUDA® executable that classifies human
electrocardiogram (ECG) signals using features extracted by the continuous wavelet transform (CWT)
and a pretrained convolutional neural network (CNN).

SqueezeNet is a deep CNN originally designed to classify images in 1000 categories. We reuse the
network architecture of the CNN to classify ECG signals based on their scalograms. A scalogram is
the absolute value of the CWT of the signal. After training SqueezeNet to classify ECG signals, you
create a CUDA executable that generates a scalogram of an ECG signal and then uses the CNN to
classify the signal. The executable and CNN are both deployed to the NVIDIA hardware.

This example uses the same data as used in “Classify Time Series Using Wavelet Analysis and Deep
Learning” (Wavelet Toolbox). In that example, transfer learning with GoogLeNet and SqueezeNet are
used to classify ECG waveforms into one of three categories. The description of the data and how to
obtain it are repeated here for convenience.

ECG Data Description and Download

The ECG data is obtained from three groups of people: persons with cardiac arrhythmia (ARR),
persons with congestive heart failure (CHF), and persons with normal sinus rhythms (NSR). In total
there are 162 ECG recordings from three PhysioNet databases: MIT-BIH Arrhythmia Database [2][3],
MIT-BIH Normal Sinus Rhythm Database [3], and The BIDMC Congestive Heart Failure Database [1]
[3]. More specifically, 96 recordings from persons with arrhythmia, 30 recordings from persons with
congestive heart failure, and 36 recordings from persons with normal sinus rhythms. The goal is to
train a model to distinguish between ARR, CHF, and NSR.

You can obtain this data from the MathWorks GitHub repository. To download the data from the
website, click Code and select Download ZIP. Save the file physionet_ECG_data-main.zip in a
folder where you have write permission. The instructions for this example assume you have
downloaded the file to your temporary directory, tempdir, in MATLAB. Modify the subsequent
instructions for unzipping and loading the data if you choose to download the data in a folder
different from tempdir.

After downloading the data from GitHub, unzip the file in your temporary directory.

unzip(fullfile(tempdir,'physionet_ECG_data-main.zip'),tempdir)

Unzipping creates the folder physionet-ECG_data-main in your temporary directory. This folder
contains the text file README.md and ECGData.zip. The ECGData.zip file contains:

• ECGData.mat
• Modified_physionet_data.txt
• License.txt

ECGData.mat holds the data used in this example. The text file Modified_physionet_data.txt is
required by PhysioNet's copying policy and provides the source attributions for the data as well as a
description of the preprocessing steps applied to each ECG recording.

Unzip ECGData.zip in physionet-ECG_data-main. Load the data file into your MATLAB
workspace.
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unzip(fullfile(tempdir,'physionet_ECG_data-main','ECGData.zip'),...
    fullfile(tempdir,'physionet_ECG_data-main'))
load(fullfile(tempdir,'physionet_ECG_data-main','ECGData.mat'))

ECGData is a structure array with two fields: Data and Labels. The Data field is a 162-by-65536
matrix where each row is an ECG recording sampled at 128 hertz. Labels is a 162-by-1 cell array of
diagnostic labels, one label for each row of Data. The three diagnostic categories are: 'ARR', 'CHF',
and 'NSR'.

Feature Extraction

After downloading the data, you must generate scalograms of the signals. The scalograms are the
"input" images to the CNN.

To store the scalograms of each category, first create an ECG data directory 'data' inside tempdir.
Then create three subdirectories in 'data' named after each ECG category. The helper function
helperCreateECGDirectories does this for you. helperCreateECGDirectories accepts
ECGData, the name of an ECG data directory, and the name of a parent directory as input arguments.
You can replace tempdir with another directory where you have write permission. You can find the
source code for this helper function in the Supporting Functions on page 5-70 section at the end of
this example.

parentDir = tempdir;
dataDir = 'data';
helperCreateECGDirectories(ECGData,parentDir,dataDir)

After making the folders, create scalograms of the ECG signals as RGB images and write them to the
appropriate subdirectory in dataDir. To create the scalograms, first precompute a CWT filter bank.
Precomputing the filter bank is the preferred method when obtaining the CWT of many signals using
the same parameters. The helper function helperCreateRGBfromTF does this. The source code for
this helper function is in the Supporting Functions on page 5-70 section at the end of this example.
To be compatible with the SqueezeNet architecture, each RGB image is an array of size 227-by-227-
by-3.

helperCreateRGBfromTF(ECGData,parentDir,dataDir)

Divide Data Set into Training and Validation Data

Load the scalogram images as an image datastore. The imageDatastore function automatically
labels the images based on folder names and stores the data as an ImageDatastore object. An
image datastore enables you to store large image data, including data that does not fit in memory,
and efficiently read batches of images when training a CNN.

allImages = imageDatastore(fullfile(tempdir,dataDir),...
    'IncludeSubfolders',true,...
    'LabelSource','foldernames');

Randomly divide the images into two groups, one for training and the other for validation. Use 80% of
the images for training and the remainder for validation. For purposes of reproducibility, we set the
random seed to the default value.

rng default
[imgsTrain,imgsValidation] = splitEachLabel(allImages,0.8,'randomized');
disp(['Number of training images: ',num2str(numel(imgsTrain.Files))]);

Number of training images: 130
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disp(['Number of validation images: ',num2str(numel(imgsValidation.Files))]);

Number of validation images: 32

SqueezeNet

SqueezeNet is a pretrained CNN that can classify images into 1000 categories. You need to retrain
SqueezeNet for our ECG classification problem. Prior to retraining, you modify several network
layers and set various training options. After retraining is complete, you save the CNN in a .mat file.
The CUDA executable will use the .mat file.

Specify an experiment trial index and a results directory. If necessary, create the directory.

trial = 1;
ResultDir = 'results';
if ~exist(ResultDir,'dir')
    mkdir(ResultDir)
end
MatFile = fullfile(ResultDir,sprintf('SqueezeNet_Trial%d.mat',trial));

Load SqeezeNet. Extract the layer graph and inspect the last five layers.

sqz = squeezenet;
lgraph = layerGraph(sqz);
lgraph.Layers(end-4:end)

ans = 
  5×1 Layer array with layers:

     1   'conv10'                            Convolution                  1000 1×1×512 convolutions with stride [1  1] and padding [0  0  0  0]
     2   'relu_conv10'                       ReLU                         ReLU
     3   'pool10'                            2-D Global Average Pooling   2-D global average pooling
     4   'prob'                              Softmax                      softmax
     5   'ClassificationLayer_predictions'   Classification Output        crossentropyex with 'tench' and 999 other classes

To retrain SqueezeNet to classify the three classes of ECG signals, replace the 'conv10' layer with a
new convolutional layer with the number of filters equal to the number of ECG classes. Replace the
classification layer with a new one without class labels.

numClasses = numel(categories(imgsTrain.Labels));
new_conv10_WeightLearnRateFactor = 1;
new_conv10_BiasLearnRateFactor = 1;
newConvLayer = convolution2dLayer(1,numClasses,...
        'Name','new_conv10',...
        'WeightLearnRateFactor',new_conv10_WeightLearnRateFactor,...
        'BiasLearnRateFactor',new_conv10_BiasLearnRateFactor);
lgraph = replaceLayer(lgraph,'conv10',newConvLayer);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,'ClassificationLayer_predictions',newClassLayer);
lgraph.Layers(end-4:end)

ans = 
  5×1 Layer array with layers:

     1   'new_conv10'        Convolution                  3 1×1 convolutions with stride [1  1] and padding [0  0  0  0]
     2   'relu_conv10'       ReLU                         ReLU
     3   'pool10'            2-D Global Average Pooling   2-D global average pooling
     4   'prob'              Softmax                      softmax
     5   'new_classoutput'   Classification Output        crossentropyex
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Create a set of training options to use with SqueezeNet.

OptimSolver = 'sgdm';
MiniBatchSize = 15;
MaxEpochs = 20;
InitialLearnRate = 1e-4;
Momentum = 0.9;
ExecutionEnvironment = 'cpu';

options = trainingOptions(OptimSolver,...
    'MiniBatchSize',MiniBatchSize,...
    'MaxEpochs',MaxEpochs,...
    'InitialLearnRate',InitialLearnRate,...
    'ValidationData',imgsValidation,...
    'ValidationFrequency',10,...
    'ExecutionEnvironment',ExecutionEnvironment,...
    'Momentum',Momentum);

Save all the parameters in a structure. The trained network and structure will be later saved in
a .mat file.

TrialParameter.new_conv10_WeightLearnRateFactor = new_conv10_WeightLearnRateFactor;
TrialParameter.new_conv10_BiasLearnRateFactor = new_conv10_BiasLearnRateFactor;
TrialParameter.OptimSolver = OptimSolver;
TrialParameter.MiniBatchSize = MiniBatchSize;
TrialParameter.MaxEpochs = MaxEpochs;
TrialParameter.InitialLearnRate = InitialLearnRate;
TrialParameter.Momentum = Momentum;
TrialParameter.ExecutionEnvironment = ExecutionEnvironment;

Set the random seed to the default value and train the network. Save the trained network, trial
parameters, training run time, and image datastore containing the validation images. The training
process usually takes 1-5 minutes on a desktop CPU. If you want to use a trained CNN from a
previous trial, set trial to the index number of that trial and LoadModel to true.

LoadModel = false;
if ~LoadModel
    rng default
    tic;
    trainedModel = trainNetwork(imgsTrain,lgraph,options);
    trainingTime = toc;
    fprintf('Total training time: %.2e sec\n',trainingTime);
    save(MatFile,'TrialParameter','trainedModel','trainingTime','imgsValidation');
else
    disp('Load ML model from the file')
    load(MatFile,'trainedModel','imgsValidation');
end

Initializing input data normalization.
|======================================================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Validation  |  Mini-batch  |  Validation  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |   Accuracy   |     Loss     |     Loss     |      Rate       |
|======================================================================================================================|
|       1 |           1 |       00:00:03 |       26.67% |       25.00% |       4.1769 |       2.9883 |      1.0000e-04 |
|       2 |          10 |       00:00:18 |       73.33% |       59.38% |       0.9875 |       1.1554 |      1.0000e-04 |
|       3 |          20 |       00:00:35 |       60.00% |       56.25% |       0.9157 |       0.9178 |      1.0000e-04 |
|       4 |          30 |       00:00:52 |       86.67% |       68.75% |       0.6708 |       0.7883 |      1.0000e-04 |
|       5 |          40 |       00:01:10 |       66.67% |       68.75% |       0.9026 |       0.7482 |      1.0000e-04 |
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|       7 |          50 |       00:01:29 |       80.00% |       78.12% |       0.5429 |       0.6788 |      1.0000e-04 |
|       8 |          60 |       00:01:48 |      100.00% |       81.25% |       0.4165 |       0.6130 |      1.0000e-04 |
|       9 |          70 |       00:02:06 |       93.33% |       84.38% |       0.3590 |       0.5480 |      1.0000e-04 |
|      10 |          80 |       00:02:24 |       73.33% |       84.38% |       0.5113 |       0.4783 |      1.0000e-04 |
|      12 |          90 |       00:02:42 |       86.67% |       84.38% |       0.4211 |       0.4065 |      1.0000e-04 |
|      13 |         100 |       00:03:00 |       93.33% |       90.62% |       0.1935 |       0.3486 |      1.0000e-04 |
|      14 |         110 |       00:03:18 |      100.00% |       90.62% |       0.1488 |       0.3119 |      1.0000e-04 |
|      15 |         120 |       00:03:36 |      100.00% |       93.75% |       0.0788 |       0.2774 |      1.0000e-04 |
|      17 |         130 |       00:03:55 |       86.67% |       93.75% |       0.2489 |       0.2822 |      1.0000e-04 |
|      18 |         140 |       00:04:13 |      100.00% |       93.75% |       0.0393 |       0.2283 |      1.0000e-04 |
|      19 |         150 |       00:04:32 |      100.00% |       93.75% |       0.0522 |       0.2364 |      1.0000e-04 |
|      20 |         160 |       00:04:50 |      100.00% |       93.75% |       0.0227 |       0.2034 |      1.0000e-04 |
|======================================================================================================================|
Training finished: Max epochs completed.

Total training time: 3.03e+02 sec

Save only the trained network in a separate .mat file. This file will be used by the CUDA executable.

ModelFile = fullfile(ResultDir,sprintf('SqueezeNet_Trial%d.mat',trial));
OutMatFile = fullfile('ecg_model.mat');

data = load(ModelFile,'trainedModel');
net = data.trainedModel;
save(OutMatFile,'net');

Use the trained network to predict the classes for the validation set.

[YPred, probs] = classify(trainedModel,imgsValidation);
accuracy = mean(YPred==imgsValidation.Labels)

accuracy = 0.9375

Summarize the performance of the trained network on the validation set with a confusion chart.
Display the precision and recall for each class by using column and row summaries. Save the figure.
The table at the bottom of the confusion chart shows the precision values. The table to the right of
the confusion chart shows the recall values.

figure
confusionMat = confusionmat(imgsValidation.Labels,YPred);
confusionchart(imgsValidation.Labels,YPred, ...
    'Title',sprintf('Confusion Matrix on Validation (overall accuracy: %.4f)',accuracy),...
    'ColumnSummary','column-normalized','RowSummary','row-normalized');
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AccFigFile = fullfile(ResultDir,sprintf('SqueezeNet_ValidationAccuracy_Trial%d.fig',trial));
saveas(gcf,AccFigFile);

Display the size of the trained network.

info = whos('trainedModel');
ModelMemSize = info.bytes/1024;
fprintf('Trained network size: %g kB\n',ModelMemSize)

Trained network size: 2991.89 kB

Determine the average time it takes the network to classify an image.

NumTestForPredTime = 20;
TrialParameter.NumTestForPredTime = NumTestForPredTime;

fprintf('Test prediction time (number of tests: %d)... ',NumTestForPredTime)

Test prediction time (number of tests: 20)... 

imageSize = trainedModel.Layers(1).InputSize;
PredTime = zeros(NumTestForPredTime,1);
for i = 1:NumTestForPredTime
    x = randn(imageSize);
    tic;
    [YPred, probs] = classify(trainedModel,x,'ExecutionEnvironment',ExecutionEnvironment);
    PredTime(i) = toc;
end
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AvgPredTimePerImage = mean(PredTime);
fprintf('Average prediction time (execution environment: %s): %.2e sec \n',...
    ExecutionEnvironment,AvgPredTimePerImage);

Average prediction time (execution environment: cpu): 1.67e-01 sec 

Save the results.

if ~LoadModel
    save(MatFile,'accuracy','confusionMat','PredTime','ModelMemSize', ...
        'AvgPredTimePerImage','-append')
end

GPU Code Generation — Define Functions

The scalogram of a signal is the input "image" to a deep CNN. Create a function,
cwt_ecg_jetson_ex, that computes the scalogram of an input signal and returns an image at the
user-specified dimensions. The image uses the jet(128) colormap. The %#codegen directive in the
function indicates that the function is intended for code generation. When using the
coder.gpu.kernelfun pragma, code generation attempts to map the computations in the
cwt_ecg_jetson_ex function to the GPU.

type cwt_ecg_jetson_ex.m

function im = cwt_ecg_jetson_ex(TimeSeriesSignal, ImgSize) %#codegen
% This function is only intended to support wavelet deep learning examples.
% It may change or be removed in a future release.

coder.gpu.kernelfun();

%% Create Scalogram
cfs = cwt(TimeSeriesSignal, 'morse', 1, 'VoicesPerOctave', 12);
cfs = abs(cfs);

%% Image generation
cmapj128 = coder.load('cmapj128');
imx = ind2rgb_custom_ecg_jetson_ex(round(255*rescale(cfs))+1,cmapj128.cmapj128);

% resize to proper size and convert to uint8 data type
im = im2uint8(imresize(imx, ImgSize)); 

end

Create the entry-point function, model_predict_ecg.m, for code generation. The function takes an
ECG signal as input and calls the cwt_ecg_jetson_ex function to create an image of the scalogram.
The model_predict_ecg function uses the network contained in the ecg_model.mat file to classify
the ECG signal.

type model_predict_ecg.m

function PredClassProb = model_predict_ecg(TimeSeriesSignal) %#codegen
% This function is only intended to support wavelet deep learning examples.
% It may change or be removed in a future release.
    coder.gpu.kernelfun();
    
    % parameters
    ModFile = 'ecg_model.mat'; % file that saves neural network model
    ImgSize = [227 227]; % input image size for the ML model
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    % sanity check signal is a row vector of correct length
    assert(isequal(size(TimeSeriesSignal), [1 65536])) 
    %% cwt transformation for the signal
    im = cwt_ecg_jetson_ex(TimeSeriesSignal, ImgSize);
    
    %% model prediction
    persistent model;
    if isempty(model)
        model = coder.loadDeepLearningNetwork(ModFile, 'mynet');
    end

    PredClassProb = predict(model, im);
    
end

To generate a CUDA executable that can be deployed to an NVIDIA target, create a custom main file
(main_ecg_jetson_ex.cu) and a header file (main_ecg_jetson_ex.h). You can generate an
example main file and use that as a template to rewrite new main and header files. For more
information, see the GenerateExampleMain property of coder.CodeConfig. The main file calls
the code generated for the MATLAB entry-point function. The main file first reads the ECG signal
from a text file, passes the data to the entry-point function, and writes the prediction results to a text
file (predClassProb.txt). To maximize computation efficiency on the GPU, the executable
processes single-precision data.

type main_ecg_jetson_ex.cu

//
// File: main_ecg_jetson_ex.cu
//
// This file is only intended to support wavelet deep learning examples.
// It may change or be removed in a future release.
        
//***********************************************************************
// Include Files
#include "rt_nonfinite.h"
#include "model_predict_ecg.h"
#include "main_ecg_jetson_ex.h"
#include "model_predict_ecg_terminate.h"
#include "model_predict_ecg_initialize.h"
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

// Function Definitions

/* Read data from a file*/
int readData_real32_T(const char * const file_in, real32_T data[65536])
{
  FILE* fp1 = fopen(file_in, "r");
  if (fp1 == 0)
  {
    printf("ERROR: Unable to read data from %s\n", file_in);
    exit(0);
  }
  for(int i=0; i<65536; i++)
  {
      fscanf(fp1, "%f", &data[i]);
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  }
  fclose(fp1);
  return 0;
}

/* Write data to a file*/
int writeData_real32_T(const char * const file_out, real32_T data[3])
{
  FILE* fp1 = fopen(file_out, "w");
  if (fp1 == 0) 
  {
    printf("ERROR: Unable to write data to %s\n", file_out);
    exit(0);
  }
  for(int i=0; i<3; i++)
  {
    fprintf(fp1, "%f\n", data[i]);
  }
  fclose(fp1);
  return 0;
}

// model predict function
static void main_model_predict_ecg(const char * const file_in, const char * const file_out)
{
  real32_T PredClassProb[3];
  //  real_T b[65536];
  real32_T b[65536];

  // readData_real_T(file_in, b);
  readData_real32_T(file_in, b);
       
  model_predict_ecg(b, PredClassProb);

  writeData_real32_T(file_out, PredClassProb);

}

// main function
int32_T main(int32_T argc, const char * const argv[])
{
  const char * const file_out = "predClassProb.txt";
  // Initialize the application.
  model_predict_ecg_initialize();
  
  // Run prediction function
  main_model_predict_ecg(argv[1], file_out); // argv[1] = file_in

  // Terminate the application.
  model_predict_ecg_terminate();
  return 0;
}

type main_ecg_jetson_ex.h

//
// File: main_ecg_jetson_ex.h
//
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// This file is only intended to support wavelet deep learning examples.
// It may change or be removed in a future release.

//
//***********************************************************************
#ifndef MAIN_H
#define MAIN_H

// Include Files
#include <stddef.h>
#include <stdlib.h>
#include "rtwtypes.h"
#include "model_predict_ecg_types.h"

// Function Declarations
extern int32_T main(int32_T argc, const char * const argv[]);

#endif

//
// File trailer for main_ecg_jetson_ex.h
//
// [EOF]
//

GPU Code Generation — Specify Target

To create an executable that can be deployed to the target device, set CodeGenMode equal to 1. If
you want to create an executable that runs locally and connects remotely to the target device, set
CodeGenMode equal to 2.

The main function reads data from the text file specified by signalFile and writes the classification
results to resultFile. Set ExampleIndex to choose a representative ECG signal. You will use this
signal to test the executable against the classify function. Jetson_BuildDir specifies the
directory for performing the remote build process on the target. If the specified build directory does
not exist on the target, then the software creates a directory with the given name.

CodeGenMode = ;
signalFile = 'signalData.txt';
resultFile = 'predClassProb.txt'; % consistent with "main_ecg_jetson_ex.cu"
Jetson_BuildDir = '~/projectECG';
ExampleIndex = 1; % 1,4: type ARR; 2,5: type CHF; 3,6: type NSR

Function_to_Gen = 'model_predict_ecg';
ModFile = 'ecg_model.mat'; % file that saves neural network model; consistent with "main_ecg_jetson_ex.cu"
ImgSize = [227 227]; % input image size for the ML model

switch ExampleIndex
    case 1 % ARR 7
        SampleSignalIdx = 7;
    case 2 % CHF 97
        SampleSignalIdx = 97;
    case 3 % NSR 132
        SampleSignalIdx = 132;
    case 4 % ARR 31
        SampleSignalIdx = 31;
    case 5 % CHF 101

5 Targeting Embedded GPU Devices

5-66



        SampleSignalIdx = 101;
    case 6 % NSR 131
        SampleSignalIdx = 131;
end
signal_data = single(ECGData.Data(SampleSignalIdx,:));
ECGtype = ECGData.Labels{SampleSignalIdx};

GPU Code Generation — Connect to Hardware

To communicate with the NVIDIA hardware, you create a live hardware connection object using the
jetson function. You must know the host name or IP address, user name, and password of the target
board to create a live hardware connection object.

Create a live hardware connection object for the Jetson hardware. In the following code, replace:

• NameOfJetsonDevice with the name or IP address of your Jetson device
• Username with your user name
• password with your password

During the creation of the object, the software performs hardware and software checks, IO server
installation, and gathers information on the peripherals connected to the target. This information is
displayed in the command window.

hwobj = jetson("NameOfJetsonDevice","Username","password");

Checking for CUDA availability on the Target...
Checking for 'nvcc' in the target system path...
Checking for cuDNN library availability on the Target...
Checking for TensorRT library availability on the Target...
Checking for prerequisite libraries is complete.
Gathering hardware details...
Checking for third-party library availability on the Target...
Gathering hardware details is complete.
 Board name              : NVIDIA Jetson Nano
 CUDA Version            : 10.0
 cuDNN Version           : 7.3
 TensorRT Version        : 5.0
 GStreamer Version       : 1.14.5
 V4L2 Version            : 1.14.2-1
 SDL Version             : 1.2
 OpenCV Version          : 3.3.1
 Available Webcams       :  
 Available GPUs          : NVIDIA Tegra X1
 Available Digital Pins  : 7  11  12  13  15  16  18  19  21  22  23  24  26  29  31  32  33  35  36  37  38  40

Use the coder.checkGpuInstall function and verify that the compilers and libraries needed for
running this example are set up correctly on the hardware.

envCfg = coder.gpuEnvConfig('jetson');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.HardwareObject = hwobj;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg)

ans = struct with fields:
                 gpu: 1
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                cuda: 1
               cudnn: 1
            tensorrt: 0
        basiccodegen: 0
       basiccodeexec: 0
         deepcodegen: 1
        deepcodeexec: 0
    tensorrtdatatype: 0
           profiling: 0

GPU Code Generation — Compile

Create a GPU code configuration object necessary for compilation. Use the coder.hardware
function to create a configuration object for the Jetson platform and assign it to the Hardware
property of the code configuration object cfg. Use 'NVIDIA Jetson' for the Jetson TX1 or TX2
boards. The custom main file is a wrapper that calls the entry-point function in the generated code.
The custom file is required for a deployed executable.

Use the coder.DeepLearningConfig function to create a CuDNN deep learning configuration
object and assign it to the DeepLearningConfig property of the GPU code configuration object. The
code generator takes advantage of NVIDIA® CUDA® deep neural network library (cuDNN) for
NVIDIA GPUs. cuDNN is a GPU-accelerated library of primitives for deep neural networks.

if CodeGenMode == 1
    cfg = coder.gpuConfig('exe');
    cfg.Hardware = coder.hardware('NVIDIA Jetson');
    cfg.Hardware.BuildDir = Jetson_BuildDir;
    cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
    cfg.CustomSource = fullfile('main_ecg_jetson_ex.cu');
elseif CodeGenMode == 2
    cfg = coder.gpuConfig('lib');
    cfg.VerificationMode = 'PIL';
    cfg.Hardware = coder.hardware('NVIDIA Jetson');
    cfg.Hardware.BuildDir = Jetson_BuildDir;
    cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
end

To generate CUDA code, use the codegen function and pass the GPU code configuration along with
the size and type of the input for the model_predict_ecg entry-point function. After code
generation on the host is complete, the generated files are copied over and built on the target.

codegen('-config ',cfg,Function_to_Gen,'-args',{signal_data},'-report');

Code generation successful: View report

GPU Code Generation — Execute

If you compiled an executable to be deployed to the target, write the example ECG signal to a text
file. Use the putFile() function of the hardware object to place the text file on the target. The
workspaceDir property contains the path to the codegen folder on the target.

if CodeGenMode == 1
    fid = fopen(signalFile,'w');
    for i = 1:length(signal_data)
        fprintf(fid,'%f\n',signal_data(i));
    end
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    fclose(fid);
    hwobj.putFile(signalFile,hwobj.workspaceDir);
end

Run the executable.

When running the deployed executable, delete the previous result file if it exists. Use the
runApplication() function to launch the executable on the target hardware, and then the
getFile() function to retrieve the results. Because the results may not exist immediately after the
runApplication() function call returns, and to allow for communication delays, set a maximum
time for fetching the results to 90 seconds. Use the evalc function to suppress the command-line
output.

if CodeGenMode == 1 % run deployed executable
    maxFetchTime = 90;
    resultFile_hw = fullfile(hwobj.workspaceDir,resultFile);
    if ispc
        resultFile_hw = strrep(resultFile_hw,'\','/');
    end
    
    ta = tic;
    
    hwobj.deleteFile(resultFile_hw)
    evalc('hwobj.runApplication(Function_to_Gen,signalFile)');
    
    tf = tic;
    success = false;
    while toc(tf) < maxFetchTime
        try
            evalc('hwobj.getFile(resultFile_hw)');
            success = true;
        catch ME
        end
        if success
            break
        end
    end
    fprintf('Fetch time = %.3e sec\n',toc(tf));
    assert(success,'Unable to fetch the prediction')
    PredClassProb = readmatrix(resultFile);
    PredTime = toc(ta);
elseif CodeGenMode == 2 % run PIL executable
    ta = tic;
    eval(sprintf('PredClassProb = %s_pil(signal_data);',Function_to_Gen));
    PredTime = toc(ta);
    eval(sprintf('clear %s_pil;',Function_to_Gen)); % terminate PIL execution
end

Fetch time = 1.658e+01 sec

Use the classify function to predict the class labels for the example signal.

ModData = load(ModFile,'net');
im = cwt_ecg_jetson_ex(signal_data,ImgSize);
[ModPred, ModPredProb] = classify(ModData.net,im);
PredCat = categories(ModPred)';

Compare the results.
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PredTableJetson = array2table(PredClassProb(:)','VariableNames',matlab.lang.makeValidName(PredCat));
fprintf('tPred = %.3e sec\nExample ECG Type: %s\n',PredTime,ECGtype)

tPred = 2.044e+01 sec
Example ECG Type: ARR

disp(PredTableJetson)

      ARR        CHF         NSR   
    _______    ________    ________

    0.99858    0.001252    0.000166

PredTableMATLAB = array2table(ModPredProb(:)','VariableNames',matlab.lang.makeValidName(PredCat));
disp(PredTableMATLAB)

      ARR         CHF          NSR    
    _______    _________    __________

    0.99858    0.0012516    0.00016613

Close the hardware connection.

clear hwobj

Summary

This example shows how to create and deploy a CUDA executable that uses a CNN to classify ECG
signals. You also have the option to create an executable the runs locally and connects to the remote
target. A complete workflow is presented in this example. After the data is downloaded, the CWT is
used to extract features from the ECG signals. Then SqueezeNet is retrained to classify the signals
based on their scalograms. Two user-defined functions are created and compiled on the target
NVIDIA device. Results of the executable are compared with MATLAB.
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Supporting Functions

helperCreateECGDirectories

function helperCreateECGDirectories(ECGData,parentFolder,dataFolder)
% This function is only intended to support wavelet deep learning examples.
% It may change or be removed in a future release.
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rootFolder = parentFolder;
localFolder = dataFolder;
mkdir(fullfile(rootFolder,localFolder))

folderLabels = unique(ECGData.Labels);
for i = 1:numel(folderLabels)
    mkdir(fullfile(rootFolder,localFolder,char(folderLabels(i))));
end
end

helperPlotReps
function helperPlotReps(ECGData)
% This function is only intended to support wavelet deep learning examples.
% It may change or be removed in a future release.

folderLabels = unique(ECGData.Labels);

for k=1:3
    ecgType = folderLabels{k};
    ind = find(ismember(ECGData.Labels,ecgType));
    subplot(3,1,k)
    plot(ECGData.Data(ind(1),1:1000));
    grid on
    title(ecgType)
end
end

helperCreateRGBfromTF
function helperCreateRGBfromTF(ECGData,parentFolder, childFolder)
% This function is only intended to support wavelet deep learning examples.
% It may change or be removed in a future release.

imageRoot = fullfile(parentFolder,childFolder);

data = ECGData.Data;
labels = ECGData.Labels;

[~,signalLength] = size(data);

fb = cwtfilterbank('SignalLength',signalLength,'VoicesPerOctave',12);
r = size(data,1);

for ii = 1:r
    cfs = abs(fb.wt(data(ii,:)));
    im = ind2rgb(im2uint8(rescale(cfs)),jet(128));
    
    imgLoc = fullfile(imageRoot,char(labels(ii)));
    imFileName = strcat(char(labels(ii)),'_',num2str(ii),'.jpg');
    imwrite(imresize(im,[227 227]),fullfile(imgLoc,imFileName));
end
end

See Also
Functions
codegen | coder.gpu.kernel | coder.gpu.kernelfun | coder.checkGpuInstall
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Objects
coder.gpuConfig | coder.CodeConfig | coder.EmbeddedCodeConfig | coder.gpuEnvConfig

Related Examples
• “Kernels from Library Calls” on page 2-8
• “Design Patterns” on page 2-26
• “Kernels from Scatter-Gather Type Operations” on page 2-4
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Troubleshooting

Three of the most common reasons why GPU Coder generated code is not performing as expected
are:

• CUDA kernels are not created.
• Host to device and device to host memory transfers (cudaMemcpy) are throttling performance.
• Not enough parallelism or device issues.

Common causes for these symptoms and the process of using the built-in screener to detect these
issues are discussed in the following topics. these topics also provide information on how to work
around for these issues and generate more efficient CUDA code.
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Workflow
1 GPU Coder relies on functionality provided by MATLAB Coder, so the first step in the

troubleshooting process is to ensure that you have MATLAB Coder compatible code. To see
programming requirements and best practices for MATLAB Coder, see “MATLAB Programming
for Code Generation”.

2 GPU Coder has varying support for functions compatible with MATLAB Coder and Image
Processing Toolbox. A list of the functions that have been tested with GPU Coder is provided in
“MATLAB Algorithm Design for GPU”. These functions are categorized into ones that are fully
supported, functions that are unsupported, and functions that are supported under certain
conditions. For example, there are certain functions that work in vector-based operations but not
when used within a loop body. It is however recommended where possible to rewrite the toolbox
functions with pure MATLAB.

3 GPU Coder uses program parallelism analysis to detect parallel for loops. Traditional serial
algorithms can vary significantly in how parallelizable they are. Some problems are
embarrassingly parallel and are easy to divide up into pieces. On the other hand, some
algorithms require some amount of refactoring to expose their inherent parallelism. The parallel
analysis that GPU Coder performs is conservative. As a result there are cases where loops are
truly parallel, but dependence analysis fails to detect the parallelism.

4 Loops must be statically bound to determine kernel dimensions. For example, while loops, loops
with break statements and loops whose iteration range cannot be statically determinable are not
easily mappable to CUDA kernels and have to be rewritten. Refer to the section on kernel
analysis for more information.

5 After considering and rectifying these issues, you are now ready to generate CUDA code. The
easiest way to accomplish code generation is to drop in the pragma coder.gpu.kernelfun in
to the entry point function. You can then follow the steps described in “Get Started with GPU
Coder” to generate CUDA code from either the command line or by using GPU Coder app.

6 To assess the performance of generated CUDA code, we can use MATLAB tic and toc functions
and determine execution time. If the resulting GPU acceleration is not satisfactory, you can
perform advance diagnostics like:

• Kernel analysis
• Memory bottleneck analysis
• Analysis with NVIDIA Visual Profiler (nvvp) tool

6 Troubleshooting
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See Also

More About
• “Code Generation Using the Command Line Interface”
• “Code Generation by Using the GPU Coder App”
• “Code Generation Reports” on page 6-5
• “Kernel Analysis” on page 6-18
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• “Memory Bottleneck Analysis” on page 6-22
• “Analyze Execution Profiles of the Generated Code” on page 6-24
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Code Generation Reports
In this section...
“Report Generation” on page 6-5
“Report Location” on page 6-6
“Errors and Warnings” on page 6-6
“Files and Functions” on page 6-6
“MATLAB Source” on page 6-6
“Generated Code” on page 6-8
“MATLAB Variables” on page 6-8
“Tracing Code” on page 6-9
“Code Insights” on page 6-10
“Additional Reports” on page 6-10
“Report Limitations” on page 6-10

GPU Coder produces a code generation report that helps you to:

• Debug code generation issues and verify that your MATLAB code is suitable for code generation.
• View generated CUDA code.
• Trace between MATLAB source code and generated CUDA code.
• See how the code generator determines and propagates type information for variables and

expressions in your MATLAB code.
• Identify potential issues in the generated code.
• Access additional reports available with Embedded Coder.

Report Generation
When you enable report generation or when an error occurs, the code generator produces a code
generation report. To control production and opening of a code generation report, use app settings,
codegen options, or configuration object properties.

In the GPU Coder app:

• To generate a report, set Always create a report to Yes.
• If you want the app to open the report for you, set Automatically launch a report if one is

generated to Yes.

At the command line, use codegen options:

• To generate a report, use the -report option.
• To generate and open a report, use the -launchreport option.

Alternatively, use the configuration object properties (coder.CodeConfig):

• To generate a report, set GenerateReport to true.
• If you want codegen to open the report for you, set LaunchReport to true.

 Code Generation Reports
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Report Location
The code generation report is named report.mldatx. It is located in the html subfolder of the code
generation output folder. If you have MATLAB R2018a or later, you can open the report.mldatx file
by double-clicking it.

Errors and Warnings
View code generation error, warning, and information messages on the All Messages tab. To
highlight the source code for an error or warning, click the message. It is a best practice to address
the first message because subsequent errors and warnings can be related to the first message.

View compilation and linking errors and warnings on the Build Logs tab.

Files and Functions
The report lists MATLAB source functions and generated files. In the MATLAB Source pane, the
Function List view organizes functions according to the containing file. To visualize functions
according to the call structure, use the Call Tree view.

To view a function in the code pane of the report, click the function in the list. Clicking a function
opens the file that contains the function. To edit the selected file in the MATLAB Editor, click Edit in
MATLAB or click a line number in the code pane.

If you have Embedded Coder and generate the report with traceability enabled, to view the source
code and generated code next to each other in the code pane, click Trace Code. You can interactively
trace between the source code and the generated code. See “Interactively Trace Between MATLAB
Code and Generated C/C++ Code” (Embedded Coder).

If you want to move the generated files for standalone code (library or executable) to another
development environment, you can put them into a zip file by clicking Package Code.

Specialized Functions or Classes

When a function is called with different types of inputs or a class uses different types for its
properties, the code generator produces specializations. In the MATLAB Source pane, numbered
functions (or classes) indicate specializations. For example:

MATLAB Source
To view a MATLAB function in the code pane, click the function in the MATLAB Source pane. To see
information about the type of a variable or expression, pause over the variable or expression.

In the code pane, syntax highlighting of MATLAB source code helps you to identify MATLAB syntax
elements. Syntax highlighting also helps you to identify certain code generation attributes such as
whether a function is extrinsic or whether an argument is constant.

6 Troubleshooting

6-6



CUDA Kernels

The green GPU marker next to mandelbrot_count function indicates that the generated code has
both CPU and GPU sections. The green vertical bar indicates the lines of code that are mapped to the
GPU. To see information about the type of a variable or expression and the name of the corresponding
GPU Kernel Function, pause over the variable or expression. When you select highlighted code by
clicking it, the code becomes blue and you can see the information even when you move your pointer
away from the selection. The code remains selected until you press Esc or select different code.

Extrinsic Functions

In the MATLAB code, the report identifies an extrinsic function with purple text. The information
window indicates that the function is extrinsic.

Constant Arguments

In the MATLAB code, orange text indicates a compile-time constant argument to an entry-point
function or a specialized function. The information window includes the constant value.
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Knowing the value of the constant arguments helps you to understand generated function signatures.
It also helps you to see when code generation created function specializations for different constant
argument values.

To export the value to a variable in the workspace, click .

Generated Code
To view a generated CUDA source or header file in the code pane, click the file in the Files tab on the
Generated Code pane. The GPU Kernels tab on the Generated Code pane contains the list of
CUDA kernels in the generated code. Click on the kernel name to navigate directly to the definition of
the corresponding kernel in the generated code.

MATLAB Variables
The Variables tab provides information about the variables for the selected MATLAB function. To
select a function, click the function in the MATLAB Source pane.

The variables table shows:

• Class, size, and complexity
• Properties of fixed-point types

This information helps you to debug errors, such as type mismatch errors, and to understand how the
code generator propagates types and represents data in the generated code.

Visual Indicators on the Variables Tab

This table describes symbols, badges, and other indicators in the variables table.

Column in the Variables
Table

Indicator Description

Name expander Variable has elements or
properties that you can see by
clicking the expander.

Name {:} Heterogeneous cell array (all
elements have the same
properties)

Name {n} nth element of a heterogeneous
cell array

6 Troubleshooting

6-8



Column in the Variables
Table

Indicator Description

Class v > n v is reused with a different
class, size, and complexity. The
number n identifies each unique
reuse (a reuse with a unique set
of properties). When you pause
over a renamed variable, the
report highlights only the
instances of this variable that
share the class, size, and
complexity.

Size :n Variable-size dimension with an
upper bound of n

Size :? Variable-size with no upper
bound

Size italics Variable-size array whose
dimensions do not change size
during execution

Class sparse prefix Sparse array
Class complex prefix Complex number

Array Layout Indicators on the Variables Tab

This table describes the badges that indicate array layout in the variables table.

Badge Description
Row-major array layout.

Column-major array layout.

A mixture of row-major and column-major
layouts.

See “Row-Major and Column-Major Array Layouts”.

Tracing Code
You can trace between MATLAB source code and generated CUDA code by using one of these
methods:

• Interactively visualize the mapping between the MATLAB code and the generated code. To access
interactive tracing, in the report, click Trace Code. The Trace Code button is enabled only if you
have Embedded Coder and you enabled code traceability when you generated code. See
“Interactively Trace Between MATLAB Code and Generated C/C++ Code” (Embedded Coder).

• Include source code as comments in the generated CUDA code. In a comment, the code generator
produces a tag that helps you find the corresponding MATLAB source code. If you have Embedded
Coder, the tag is a link to the source code. See “Trace Between Generated CUDA Code and
MATLAB Source Code” on page 6-11.
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Code Insights
The code generator can detect and report issues that can potentially occur in the generated code.
View the messages on the Code Insights tab. The issues include:

• Potential differences between the behavior of the generated code and the behavior of the MATLAB
code. The report includes potential differences messages only if you enabled potential differences
reporting. See “Potential Differences Reporting”.

• GPU code generation diagnostics report that identifies issues during code generation and
suggests potential solutions to maximize performance.

• Potential row-major issues. See “Code Design for Row-Major Array Layout”.

Additional Reports
The Summary tab can have links to these additional reports:

• GPU code metrics report. See “Generating a Static Code Metrics Report for Code Generated from
MATLAB Code” (Embedded Coder).

Report Limitations
• The report does not show full information for unrolled loops. It displays data types of one arbitrary

iteration.
• The report does not show information about dead code.

See Also

More About
• “Code Generation Using the Command Line Interface”
• “Code Generation by Using the GPU Coder App”
• “Generating a GPU Code Metrics Report for Code Generated from MATLAB Code” on page 6-

15
• “Trace Between Generated CUDA Code and MATLAB Source Code” on page 6-11
• “Interactively Trace Between MATLAB Code and Generated C/C++ Code” (Embedded Coder)
• “Row-Major and Column-Major Array Layouts”
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Trace Between Generated CUDA Code and MATLAB Source
Code

This example shows how to trace (highlight sections) between MATLAB source code and the
generated CUDA code. Tracing between source code and generated code helps you to:

• Understand how the code generator maps your algorithm to GPU kernels.
• Debug issues in the generated code.
• Evaluate the quality of the generated code.

You can trace by using one of these methods:

• Configure GPU Coder to generate code that includes the MATLAB source code as comments. In
the comments, a traceability tag immediately precedes each line of source code. The traceability
tag provides details about the location of the source code. If you have Embedded Coder, in the
code generation report, the traceability tags link to the corresponding MATLAB source code.

• With Embedded Coder, produce a code generation report that includes interactive traceability.
Interactive tracing in the report helps you to visualize the mapping between the MATLAB source
code and the generated C/C++ code. See “Interactively Trace Between MATLAB Code and
Generated C/C++ Code” (Embedded Coder).

Generate Traceability Tags
Create the MATLAB Source Code

To illustrate traceability tags, this example uses an implementation of the Mandelbrot set by using
standard MATLAB commands running on the CPU. This implementation is based on the code provided
in the Experiments with MATLAB e-book by Cleve Moler.

The Mandelbrot set is the region in the complex plane consisting of the values z0 for which the
trajectories defined by this equation remain bounded at k→∞.

zk + 1 = zk
2 + z0, k = 0, 1, …

Create a MATLAB function called mandelbrot_count.m with the following lines of code. This code
is a vectorized MATLAB implementation of the Mandelbrot set. For every point (xGrid,yGrid) in
the grid, it calculates the iteration index count at which the trajectory defined by the equation
reaches a distance of 2 from the origin. It then returns the natural logarithm of count, which is used
generate the color coded plot of the Mandelbrot set.

function count = mandelbrot_count(maxIterations,xGrid,yGrid)
% Add kernelfun pragma to trigger kernel creation
coder.gpu.kernelfun;
% mandelbrot computation

z0 = xGrid + 1i*yGrid;
count = ones(size(z0));

z = z0;
for n = 0:maxIterations
    z = z.*z + z0;
    inside = abs(z)<=2;

 Trace Between Generated CUDA Code and MATLAB Source Code
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    count = count + inside;
end
count = log(count);

Create Test Vectors

Create test vectors for the entry-point function by using the following lines of code. The script
generates a 1000 x 1000 grid of real parts (x) and imaginary parts (y) between the limits specified by
xlim and ylim. You can use these inputs to validate the mandelbrot_count entry-point function
and plots the resulting Mandelbrot set.

maxIterations = 500;
gridSize = 1000;
xlim = [-0.748766713922161,-0.748766707771757];
ylim = [0.123640844894862,0.123640851045266];

x = linspace(xlim(1),xlim(2),gridSize);
y = linspace(ylim(1),ylim(2),gridSize);
[xGrid,yGrid] = meshgrid(x,y);

Generate Traceability Tags

To produce traceability tags in the generated code, enable generation of MATLAB source code as
comments.

• In the GPU Coder app, set MATLAB source code as comments to Yes.
• In a code generation configuration object, create a coder.gpuConfig object and set the

MATLABSourceComments property to true.
cfg = coder.gpuConfig('dll','ecoder',true);
cfg.GenerateReport = true;
cfg.MATLABSourceComments = true;
cfg.GpuConfig.CompilerFlags = '--fmad=false';
codegen -config cfg -args {maxIterations,xGrid,yGrid} mandelbrot_count

Note The --fmad=false flag when passed to the nvcc, instructs the compiler to disable
Floating-Point Multiply-Add (FMAD) optimization. This option is set to prevent numerical
mismatch in the generated code because of architectural differences in the CPU and the GPU. For
more information, see “Numerical Differences Between CPU and GPU”.

Access the Report

To open the code generation report, click View report.

The code generation report is named report.mldatx. It is located in the html subfolder of the code
generation output folder. If you have MATLAB R2018a or later, you can open the report.mldatx file
by double-clicking it.

In the MATLAB Source pane, select mandelbrot_count.m. You see the MATLAB source code in
the code pane.
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The green GPU marker next to mandelbrot_count function indicates that the generated code has
both CPU and GPU sections. The green vertical bar indicates the lines of code that are mapped to the
GPU. To see information about the type of a variable or expression and the name of the corresponding
GPU Kernel Function, pause over the variable or expression. When you select highlighted code by
clicking it, the code becomes blue and you can see the information even when you move your pointer
away from the selection. The code remains selected until you press Esc or select different code.

To view the CUDA code generated for the mandelbrot_count.m entry-point function, select
mandelbrot_count.cu from the Generated Code pane.

Format of Traceability Tags
In the generated code, traceability tags appear immediately before the MATLAB source code in the
comment. The format of the tag is:
<filename>:<line number>.

For example, this comment indicates that the code z0 = xGrid + 1i*yGrid; appears at line 5 in
the source file mandelbrot_count.m.

/* 'mandelbrot_count:5' z0 = xGrid + 1i*yGrid;
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Traceability Tag Limitations
• You cannot include MATLAB source code as comments for:

• MathWorks toolbox functions
• P-code

• The appearance or location of comments can vary:

• Even if the implementation code is eliminated, for example, due to constant folding, comments
can still appear in the generated code.

• If a complete function or code block is eliminated, comments can be eliminated from the
generated code.

• For certain optimizations, the comments can be separated from the generated code.
• Even if you do not choose to include source code comments in the generated code, the

generated code includes legally required comments from the MATLAB source code.
• Functions with multiple outputs do not get highlighted.
• Calls to coder functions such as coder.nullcopy will not be highlighted
• Code that gets mapped to library calls such as cuDNN, cuBLAS and cuFFT will not be highlighted.

As a result, functions that are completely mapped to GPU may be tagged incorrectly.

See Also
codegen | coder.gpuConfig | coder.CodeConfig | coder.EmbeddedCodeConfig

Related Examples
• “Code Generation by Using the GPU Coder App”
• “Code Generation Using the Command Line Interface”
• “Code Generation Reports” on page 6-5
• “Generating a GPU Code Metrics Report for Code Generated from MATLAB Code” on page 6-

15
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Generating a GPU Code Metrics Report for Code Generated
from MATLAB Code

The GPU static code metrics report contains the results of static analysis of the generated CUDA
code, including information on the generated CUDA kernels, thread and block dimensions, memory
usage and other statistics. To produce a static code metrics report, you must use GPU Coder to
generate standalone CUDA code and produce a code generation report. See “Code Generation
Reports” on page 6-5.

By default, static code metrics analysis does not run at code generation time. Instead, if and when
you want to run the analysis and view the results, click GPU Code Metrics on the Summary tab of
the code generation report.

Example GPU Code Metrics Report
This example runs GPU static code metrics analysis and examines a static code metrics report.

Create a MATLAB function called mandelbrot_count.m with the following lines of code. This code
is a vectorized MATLAB implementation of the Mandelbrot set. For every point (xGrid,yGrid) in
the grid, it calculates the iteration index count at which the trajectory defined by the equation
reaches a distance of 2 from the origin. It then returns the natural logarithm of count, which is used
generate the color coded plot of the Mandelbrot set.

function count = mandelbrot_count(maxIterations,xGrid,yGrid)
% Add kernelfun pragma to trigger kernel creation
coder.gpu.kernelfun;
% mandelbrot computation

z0 = xGrid + 1i*yGrid;
count = ones(size(z0));

z = z0;
for n = 0:maxIterations
    z = z.*z + z0;
    inside = abs(z)<=2;
    count = count + inside;
end
count = log(count);

Create sample data with the following lines of code. The code generates a 1000 x 1000 grid of real
parts (x) and imaginary parts (y) between the limits specified by xlim and ylim.

maxIterations = 500;
gridSize = 1000;
xlim = [-0.748766713922161,-0.748766707771757];
ylim = [0.123640844894862,0.123640851045266];

x = linspace(xlim(1),xlim(2),gridSize);
y = linspace(ylim(1),ylim(2),gridSize);
[xGrid,yGrid] = meshgrid(x,y);

Enable production of a code generation report by using a configuration object for standalone code
generation (static library, dynamically linked library, or executable program).
cfg = coder.gpuConfig('dll');
cfg.GenerateReport = true;
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cfg.MATLABSourceComments = true;
cfg.GpuConfig.CompilerFlags = '--fmad=false';

Note The --fmad=false flag when passed to the nvcc, instructs the compiler to disable Floating-
Point Multiply-Add (FMAD) optimization. This option is set to prevent numerical mismatch in the
generated code because of architectural differences in the CPU and the GPU. For more information,
see “Numerical Differences Between CPU and GPU”.

Alternatively, use the codegen -report option.

Generate code by using codegen. Specify the type of the input argument by providing an example
input with the -args option. Specify the configuration object by using the -config option.

codegen -config cfg -args {maxIterations,xGrid,yGrid} mandelbrot_count

To open the code generation report, click View report.

To run the static code metrics analysis and view the code metrics report, on the Summary tab of the
code generation report, click GPU Code Metrics.

Explore the code metrics report
1 To see the information on the generated CUDA kernels, click CUDA Kernels.

• Kernel Name contains the list of generated CUDA kernels. By default, GPU Coder prepends
the kernel name with the name of the entry-point function.

• Thread Dimensions is an array of the form [Tx,Ty,Tz] that identifies the number of
threads in the block along dimensions x, y, and z.

• Block Dimensions is an array of the form [Bx,By,1] is an array that defines the number of
blocks in the grid along dimensions x and y (z not used).

• Shared Memory Size and Constant Memory columns provide metrics on the shared and
constant memory space usage in the generated code.

• Minimum BlocksPerSM is the minimum number of blocks per streaming multiprocessor
and indicates the number of blocks with which to launch the kernels.

To navigate from the report to the generated kernel code, click a kernel name.
2 To see the variables that have memory allocated on the GPU device, go to the CUDA Malloc

section.
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3 To view information on the cudaMemCpy calls in the generated code, click CUDA Memcpy.

Limitations
• If you have the Embedded Coder product, the code configuration object contains the

GenerateCodeMetricsReport property to enable static metric report generation at compile
time. GPU Coder does not honor this setting and has no effect during code generation.

See Also
codegen | coder.gpuConfig | coder.CodeConfig | coder.EmbeddedCodeConfig

More About
• “Code Generation Reports” on page 6-5
• “Interactively Trace Between MATLAB Code and Generated C/C++ Code” (Embedded Coder)
• “Trace Between Generated CUDA Code and MATLAB Source Code” on page 6-11
• “Code Generation Using the Command Line Interface”
• “Code Generation by Using the GPU Coder App”
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Kernel Analysis
In this section...
“Mapping Nested Loops to Kernels” on page 6-18
“For-Loops with Break” on page 6-19
“Dependence Analysis Parallel Loop Check Fails” on page 6-19
“Logical Indexing of Arrays” on page 6-20
“Unsupported Functions” on page 6-20
“Loop Interchange” on page 6-20

For GPU code generation, the primary mechanism for creating CUDA kernels is by using for-loops.
The way you write loops in your MATLAB code has a significant impact on the number of kernels
created as well as the performance of the generated code. When you generate GPU code, check the
diagnostic report to see if your loop segment has Loop not parallelized notices. Calls to
MATLAB functions in your code may also have for-loops that contain these notices. To get maximum
performance, you want to ensure that compute intensive loop segments in your code are mapped to
kernels and executed in parallel. The following recommendations help you in achieving this goal and
generating efficient CUDA kernels.

Mapping Nested Loops to Kernels
Condition

Consider a function that has nested for-loops.

function y = foo(x)
 ...
 for i1 = 1:N1
  for i2 = 1:N2
   for i3 = 1:N3
    for i4 = 1:N4
     ...
    end
   end
  end
 end

Assume that one of the intermediate loop i3 is not parallelizable. When performs loop analysis to
create kernels, GPU Coder it considers only the outermost parallel loops i1,i2 and creates a kernel
with the outer loop dimensions N1,N2. The loops i3,i4 are within the kernel body and are executed
sequentially. However if the innermost i4 is large (iteration), then better performance may be
achieved by creating kernels for the innermost loop.

Action

There are three ways in which you can parallelize the innermost loop:

• Rewrite the code so that the innermost code segment is not within a nested loop.
• If the iteration size of the outer loop is small, then attach the loop to a coder.unroll function.

This function unrolls the for-loop by making a copy of the loop body for each loop iteration. For
more information, see coder.unroll.
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function y = foo(x)
 ...
 for i1 = coder.unroll(1:N1)
  ...
 end

• Make the outer loop dimension as dynamic bound. This way parallel loop analysis fails on the
outer loop, whereas it succeeds on the inner loops.

function y = foo(x,N1)
 ...
 for i1 = 1:N1
  ...
 end

For-Loops with Break
Condition

Loops with break are not supported.

while (i < N)
    ...
    ...
    if (cond2)
        ...
        ...
        break;
    end
end

Action

Remove breaks by creating a guard variable and conditional.

cond = true;
while (i< N)
    if(cond)
        ...
        ...
        if(cond2)
            cond = false;
        end
    end
end

Dependence Analysis Parallel Loop Check Fails
Condition

Kernel extraction use parallel loop dependence analysis. There are cases where loop dependence
analysis cannot detect a parallel for loop. The coder.gpu.kernel allows GPU Coder to override
dependence analysis and force kernel creation. The caveat is for user to be sure that the loop is “for-
all” loop with no inter-iteration dependencies.
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Action

Use coder.gpu.kernel pragma explicitly on each of your for-loops.

Logical Indexing of Arrays
Condition

GPU Coder may not create kernels when logical indexing is used for accessing array elements.

i = (mag ~= 0);
vx(i) = vx(i)./mag(i);
vy(i) = vy(i)./mag(i); 

Action

Rewrite the code by using a loop body and guarding with an appropriate conditional.

for i = 1:numel(mag)
 if (mag(i) ~= 0)
    vx(i) = vx(i)./mag(i);
    vy(i) = vy(i)./mag(i);  
 end
end 

Unsupported Functions
Condition

Use of unsupported functions, coder pragmas, toolbox functions etc. inside a loop prevents them from
becoming a kernel.

Action

Try rewriting unsupported functions using pure MATLAB.

Loop Interchange
Condition

If smaller loops in a loop nest are the outer most loops, then a kernel could be created with just a
subset of the loops in the nesting. If algorithm allows it, always put the largest loops in the outermost
nesting.

Action

Rewrite loop nesting with larger loops as outer loops.

See Also

More About
• “Code Generation Using the Command Line Interface”
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• “Code Generation by Using the GPU Coder App”
• “Code Generation Reports” on page 6-5
• “Trace Between Generated CUDA Code and MATLAB Source Code” on page 6-11
• “Generating a GPU Code Metrics Report for Code Generated from MATLAB Code” on page 6-15
• “Memory Bottleneck Analysis” on page 6-22
• “Analyze Execution Profiles of the Generated Code” on page 6-24
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Memory Bottleneck Analysis
In this section...
“Data Alignment” on page 6-22
“Small Data Sizes” on page 6-22
“Too Many cudaMemcpys” on page 6-22
“Constant Inputs” on page 6-22
“Stack Memory Usage” on page 6-23

Data Alignment
Condition

MATLAB is column major but the algorithm could be implemented for an optimized row-major
implementation. In the generated code, if your fastest changing dimension is not the innermost loop,
then memory is not coalesced. Often, transposing the input matrices can simply fix this problem.

Action

Try transposing the data.

Small Data Sizes
Condition

If your problem/data size is too small, then the overhead of moving data to GPU (even if it is just at
the I/O boundary) can offset any performance gains of running on the GPU.

Action

Try the algorithm with larger data sizes.

Too Many cudaMemcpys
Condition

If you use only coder.gpu.kernel, then everything outside the loop goes to the CPU. To try to keep
most of the code on the GPU, use of both pragmas is recommended. Also, presence of unsupported
functions or any function/statement that cannot run on the GPU, causes more cudaMemcpys to be
generated.

Action

Use coder.gpu.kernelfun in addition to coder.gpu.kernel

Constant Inputs
Recommendation

If certain inputs of your entry-point function are constant, wrap them using the coder.const object.
Use of coder.const object indicates that these variables are constant during code generation.
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Without this function, GPU Coder considers these inputs to be variables and hence treats all matrices
sized by these variables as variable-dimension matrices. GPU Coder does not create good kernels out
of variable-dimension matrices since currently there is no support for dynamic sizing of kernels or
dynamic cudaMemcpy function calls.

Stack Memory Usage

Recommendation

Using large stack memory inside kernels can reduce the performance of the generated code. Under
such conditions consider rewriting the algorithm in a different fashion or breaking it into smaller
computations to reduce stack memory usage and improve performance.

See Also

More About
• “Code Generation Using the Command Line Interface”
• “Code Generation by Using the GPU Coder App”
• “Code Generation Reports” on page 6-5
• “Trace Between Generated CUDA Code and MATLAB Source Code” on page 6-11
• “Generating a GPU Code Metrics Report for Code Generated from MATLAB Code” on page 6-15
• “Kernel Analysis” on page 6-18
• “Analyze Execution Profiles of the Generated Code” on page 6-24
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Analyze Execution Profiles of the Generated Code
This example shows you how to perform fine grain analysis for a MATLAB algorithm and its
generated CUDA code through software-in-the-loop (SIL) execution profiling. The Embedded Coder
product must be installed to generate the execution profiling report.

Note The profiling workflow depends on the nvprof tool from NVIDIA. In CUDA Toolkit v10.1,
NVIDIA restricts access to performance counters to only admin users. To enable GPU performance
counters to be used by all users, see the instructions provided in Permission issue with Performance
Counters (NVIDIA).

Create a Design File
For this example create a entry-point function that performs N-D fast Fourier transform. Use the
coder.gpu.kernelfun pragma to map the FFT to the GPU. By default, the EnableCUFFT property
is enabled, so the code generator uses cuFFT library to perform the FFT operation.

function [Y] = gpu_fftn(X)
  coder.gpu.kernelfun();
  Y = fftn(X);
end

Generate the Execution Profiling Report
Use the gpucoder.profile function to generate the execution profiling report.
cfg = coder.gpuConfig('exe');
cfg.GpuConfig.MallocMode = 'discrete';
gpucoder.profile('gpu_fftn',{rand(2,4500,4)},'CodegenConfig',cfg, ...
'CodegenArguments','-d profilingdir','Threshold',0.001)

The code execution profiling report opens. This report provides metrics based on data collected from
a SIL execution. Execution times are calculated from data recorded by instrumentation probes added
to the SIL test harness or inside the code generated for each component. See “View Execution Times”
(Embedded Coder) for more information.
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See Also
gpucoder.profile | codegen | coder.EmbeddedCodeConfig

More About
• “Code Generation Using the Command Line Interface”
• “Code Generation by Using the GPU Coder App”
• “Code Generation Reports” on page 6-5
• “Trace Between Generated CUDA Code and MATLAB Source Code” on page 6-11
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• “Generating a GPU Code Metrics Report for Code Generated from MATLAB Code” on page 6-15
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Analysis with NVIDIA Profiler

In this section...
“Not Enough Parallelism” on page 6-27
“Too Many Local per-Thread Registers” on page 6-27

Not Enough Parallelism
Condition

If the kernel is doing little work, then the overhead of memcpy and kernel launches can offset any
performance gains. Consider working on a larger sample set (thus increasing the loop size). To detect
this condition, look at the nvvpreport.

Action

Do more work in the loop or increase sample set size

Too Many Local per-Thread Registers
Condition

If there are too many local/temp variables used in the loop body, then it causes high register pressure
in the per-thread register file. You can detect this condition by running in GPU safe-build mode. Or,
nvvp reports this fact.

Action

Consider using different block sizes in coder.gpu.kernel pragma.

See Also

More About
• “Code Generation Using the Command Line Interface”
• “Code Generation by Using the GPU Coder App”
• “Code Generation Reports” on page 6-5
• “Trace Between Generated CUDA Code and MATLAB Source Code” on page 6-11
• “Generating a GPU Code Metrics Report for Code Generated from MATLAB Code” on page 6-15
• “Kernel Analysis” on page 6-18
• “Memory Bottleneck Analysis” on page 6-22
• “Analyze Execution Profiles of the Generated Code” on page 6-24
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GPU Coder Limitations

General Limitations
• Spaces in file and path names cause build errors in Linux. GPU Coder uses GNU make tools that

have known limitations when file names contain spaces. It is generally a good practice to avoid
spaces in file, project, and path names.

• GPU Coder disables integrity and array bounds/dimension checks that are part of MATLAB Coder.
• When using coder.inline('never') option during code generation, GPU Coder creates kernel

for only the entry-point function containing the coder.gpu.kernelfun pragma and does not
create kernels automatically for any sub-functions within the entry-point function. It is therefore
recommended not to use the coder.inline('never') option.

• Generating kernels for structures with variable-size arrays is not supported.
• The CUDA compute capability that you select must match the compute capability of your

hardware.
• When using coder.ceval with GPU pointers, the Check for Issues option for CPU is not

supported.
• GPU Coder does not support code generation for Simulink blocks. You cannot use the NVIDIA

Jetson and NVIDIA Drive boards from the Hardware board option in the Hardware
Implementation pane and target NVIDIA GPUs.

• GPU Coder does not support SIMD code generation. Disable SIMD code generation by setting the
Leverage target hardware instruction set extensions parameter to None.

Function Limitations
• You can generate CUDA code for only a subset of MATLAB built-in functions and toolbox functions.
• When targeting NVIDIA Tegra devices, GPU Coder does not support the quasi-euclidean

method of bwdist function and image dimensions greater than 3.
• When imfilter is used with a 1xN kernel and N is an even integer, shared memory is not used in

generated code. When imfilter is used with a three-dimensional image, shared memory is not
used in the conv2 implementation.

• GPU Coder has empty code replacement report even if there is a replacement. This issue has been
identified with atan function.

Unsupported CUDA Features
List of CUDA features that are not supported:

• Texture memory
• Asynchronous streams
• Dynamic kernel invocation — calling kernels from within kernels
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See Also

More About
• “Code Generation Using the Command Line Interface”
• “Code Generation by Using the GPU Coder App”
• “Code Generation Reports” on page 6-5
• “Trace Between Generated CUDA Code and MATLAB Source Code” on page 6-11
• “Generating a GPU Code Metrics Report for Code Generated from MATLAB Code” on page 6-15
• “Kernel Analysis” on page 6-18
• “Memory Bottleneck Analysis” on page 6-22
• “Analyze Execution Profiles of the Generated Code” on page 6-24
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GPU Execution Profiling of the Generated Code

This example shows you how to generate an execution profiling report for the generated CUDA®
code by using the gpucoder.profile function.

The GPU Coder profiler runs a software-in-the-loop (SIL) execution that produces execution-time
metrics for the tasks and kernels in the generated code. This example generates an execution
profiling report for the Fog Rectification example from GPU Coder. For more information, see “Fog
Rectification” on page 2-80.

Third-Party Prerequisites

• CUDA enabled NVIDIA® GPU.
• NVIDIA CUDA toolkit and driver.
• NVIDIA Nsight™ Systems. For information on the supported versions of the compilers and

libraries, see “Third-Party Hardware”.
• Environment variables for the compilers and libraries. For setting up the environment variables,

see “Setting Up the Prerequisite Products”.
• The profiling workflow of this example depends on the profiling tools from NVIDIA that accesses

GPU performance counters. From CUDA toolkit v10.1, NVIDIA restricts access to performance
counters to only admin users. To enable GPU performance counters to be used by all users, see
the instructions provided in Permission issue with Performance Counters (NVIDIA).

Verify GPU Environment

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('host');
envCfg.BasicCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Fog Rectification Algorithm

To improve the foggy input image, the algorithm performs fog removal and then contrast
enhancement. The diagram shows the steps of both these operations.

This example takes a foggy RGB image as input. To perform fog removal, the algorithm estimates the
dark channel of the image, calculates the airlight map based on the dark channel, and refines the
airlight map by using filters. The restoration stage creates a defogged image by subtracting the
refined airlight map from the input image.

Then, the Contrast Enhancement stage assesses the range of intensity values in the image and uses
contrast stretching to expand the range of values and make features stand out more clearly.
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type fog_rectification.m

function [out] = fog_rectification(input) %#codegen

%   Copyright 2017-2019 The MathWorks, Inc.

coder.gpu.kernelfun;

% restoreOut is used to store the output of restoration
restoreOut = zeros(size(input),'double');

% Changing the precision level of input image to double
input = double(input)./255;

%% Dark channel Estimation from input
darkChannel = min(input,[],3);

% diff_im is used as input and output variable for anisotropic diffusion
diff_im = 0.9*darkChannel;
num_iter = 3;

% 2D convolution mask for Anisotropic diffusion
hN = [0.0625 0.1250 0.0625; 0.1250 0.2500 0.1250; 0.0625 0.1250 0.0625];
hN = double(hN);

%% Refine dark channel using Anisotropic diffusion.
for t = 1:num_iter
    diff_im = conv2(diff_im,hN,'same');
end

%% Reduction with min
diff_im = min(darkChannel,diff_im);

diff_im = 0.6*diff_im ;

%% Parallel element-wise math to compute
%  Restoration with inverse Koschmieder's law
factor = 1.0./(1.0-(diff_im));
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restoreOut(:,:,1) = (input(:,:,1)-diff_im).*factor;
restoreOut(:,:,2) = (input(:,:,2)-diff_im).*factor;
restoreOut(:,:,3) = (input(:,:,3)-diff_im).*factor;
restoreOut = uint8(255.*restoreOut);
restoreOut = uint8(restoreOut);

%%
% Stretching performs the histogram stretching of the image.
% im is the input color image and p is cdf limit.
% out is the contrast stretched image and cdf is the cumulative prob.
% density function and T is the stretching function.

p = 5;
% RGB to grayscale conversion
im_gray = im2gray(restoreOut);
[row,col] = size(im_gray);

% histogram calculation
[count,~] = imhist(im_gray);
prob = count'/(row*col);

% cumulative Sum calculation
cdf = cumsum(prob(:));

% finding less than particular probability
i1 = length(find(cdf <= (p/100)));
i2 = 255-length(find(cdf >= 1-(p/100)));

o1 = floor(255*.10);
o2 = floor(255*.90);

t1 = (o1/i1)*[0:i1];
t2 = (((o2-o1)/(i2-i1))*[i1+1:i2])-(((o2-o1)/(i2-i1))*i1)+o1;
t3 = (((255-o2)/(255-i2))*[i2+1:255])-(((255-o2)/(255-i2))*i2)+o2;

T = (floor([t1 t2 t3]));

restoreOut(restoreOut == 0) = 1;

u1 = (restoreOut(:,:,1));
u2 = (restoreOut(:,:,2));
u3 = (restoreOut(:,:,3));

% Replacing the value from look up table
out1 = T(u1);
out2 = T(u2);
out3 = T(u3);

out = zeros([size(out1),3], 'uint8');
out(:,:,1) = uint8(out1);
out(:,:,2) = uint8(out2);
out(:,:,3) = uint8(out3);
return

Generate Execution Profiling Report

To generate an execution profiling report, create a code configuration object with a dynamic library
('dll') build type. Because the gpucoder.profile function accepts only an Embedded Coder™
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configuration object, enable the option to create a coder.EmbeddedCodeConfig configuration
object.

cfg = coder.gpuConfig('dll','ecoder',true);
cfg.GpuConfig.MallocMode = 'discrete';

Run gpucoder.profile with the default threshold value of zero seconds. If the generated code has
a lot of CUDA API or kernel calls, it is likely that each call constitutes only a small proportion of the
total time. In such cases, set a low (non-zero) threshold value to generate a meaningful profiling
report. It is not advisable to set number of executions value to a very low number (less than 5)
because it does not produce an accurate representation of a typical execution profile.

inputImage = imread('foggyInput.png');
inputs  = {inputImage};
designFileName = 'fog_rectification';

gpucoder.profile(designFileName, inputs, ...
    'CodegenConfig', cfg, 'Threshold', 0, 'NumCalls', 10);

Code generation successful: View report

### Starting SIL execution for 'fog_rectification'
    To terminate execution: clear fog_rectification_sil
    Execution profiling data is available for viewing. Open Simulation Data Inspector.
    Execution profiling report available after termination.
 
### Host application produced the following standard error (stderr) messages:
Warning: LBR backtrace method is not supported on this platform. DWARF backtrace method will be used.
Collecting data...

 
### Stopping SIL execution for 'fog_rectification'

Code Execution Profiling Report for the fog_rectification Function

The code execution profiling report provides metrics based on data collected from a SIL execution.
Execution times are calculated from data recorded by instrumentation probes added to the SIL or PIL
test harness or inside the code generated for each component. For more information, see “View
Execution Times” (Embedded Coder).

These numbers are representative. The actual values depend on your hardware setup. This profiling
was done using MATLAB R2022b on a machine with an 6 core, 3.5GHz Intel® Xeon® CPU, and an
NVIDIA TITAN XP GPU

Summary

This section gives information about the creation of the report.
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Profiled Sections of Code

This section contains information about profiled code sections. The report contains time
measurements for:

• The entry_point_fn_initialize function, for example, fog_rectification_initialize.
• The entry-point function, for example, fog_rectification.
• The entry_point_fn_terminate function, for example, fog_rectification_terminate.

• The section column lists the names of the function from which code is generated.
• Maximum execution time is the longest time between start and end of code section.
• Average Execution Time is the average time between start and end of code section.
• Maximum Self Time is the maximum execution time, excluding time in child sections.
• Average Self Time is the average execution time, excluding time in child sections.
• Calls indicate the number of calls to the code section.
• To view execution-time metrics for a code section in the Command Window, on the corresponding

row, click the icon .
• To display measured execution times, click the Simulation Data Inspector icon . You can use the

Simulation Data Inspector to manage and compare plots from various executions.
• To display the execution-time distribution, click the icon .

By default, the report displays time in milliseconds (10−3 seconds). You can specify the time unit and
numeric display format. For example, to display time in microseconds (10−6 seconds), use the
report (Embedded Coder) command:

executionProfile=getCoderExecutionProfile('fog_rectification');
report(executionProfile, ...
    'Units', 'Seconds', ...
    'ScaleFactor', '1e-06', ...
    'NumericFormat', '%0.3f')

ans = 
'/local-ssd/lnarasim/MATLAB/ExampleManager/lnarasim.Bdoc22b.j1984243/gpucoder-ex87489778/codegen/dll/fog_rectification/html/orphaned/ExecutionProfiling_f31bfb52dfefde93.html'

The report displays time in seconds only if the timer is calibrated, that is, the number of timer ticks
per second is known. On a Windows® machine, the software determines this value for a SIL
simulation. On a Linux® machine, you must manually calibrate the timer. For example, if your
processor speed is 3.5 GHz, specify the number of timer ticks per second:

executionProfile.TimerTicksPerSecond = 3.5e9;
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Execution Times in Percentages

This section provides function execution times as percentages of caller function and total execution
times, which can help you to identify performance bottlenecks in generated code.

GPU Profiling Trace for fog_rectification

Section 4 shows the complete trace of GPU calls that have a runtime higher than the threshold value.
A snippet of the profiling trace is shown.
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GPU Profiling Summary for fog_rectification

Section 5 in the report shows the summary of GPU calls that are shown in section 4. The cudaFree is
called 15 times per run of fog_rectification and the average time taken by 15 calls of cudaFree
over 9 runs of fog_rectification is 1.3790 milliseconds. This summary is sorted in descending
order of time taken to give the users an idea which GPU call is taking the maximum time.
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Definitions

This section provides descriptions of some metrics.
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Register Count nvlink Error

Issue
The NVIDIA compiler (nvcc) may fail in the linking stage due to a mismatch in the maximum number
of registers computed at compilation. A generated CUDA kernel is compiled with a max register
count decided by NVCC. A kernel may call a device function in a different CUDA file. The device
function may be compiled to use a larger number of registers exceeding the max register count of the
kernel.

You may encounter an error message with the following pattern:

nvlink error : entry function 'xxx' with max regcount of n calls function 'yyy' with regcount of m.

nvlink error : entry function 'xx' with max 
regcount of n calls function 'yyy' with 
regcount of m.

where 'xxx' and 'yyy' are the mangled function names, n and m are integers, and m is larger than
n.

Possible Solutions
Use the '-maxrregcount n' compiler flag of NVCC to specify the maximum amount of registers.
Use the compiler flags option in the GPU code configuration parameters to pass compiler flags to
NVCC. For example,

cfg = coder.gpuConfig;
cfg.GpuConfig.compilerFlags = '-maxrregcount n';

where n is the smallest integer number of register count in the error message thrown by nvlink.

See Also
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